Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33627888

RESUMO

Improving model performance in ungauged basins has been a chronic challenge in watershed model application to understand and assess water quality impacts of agricultural conservation practices, land use change, and climate adaptation measures in large river basins. Here, we evaluate a modified version of SWAT2012 (referred to as SWAT-EC hereafter), which integrates an energy balanced soil temperature module (STM) and the CENTRUY-based soil organic matter algorithm, for simulating water quality parameters in the Upper Mississippi River Basin (UMRB), and compare it against the original SWAT2012. Model evaluation was performed for simulating streamflow, sediment, and nitrate-N (NO3-N) and total nitrogen (TN) loadings at three stations near the outlets of UMRB. The model comparison was conducted without parameter calibration in order to assess their performance under ungauged conditions. The results indicate that SWAT-EC outperformed SWAT2012 for stream flow and NO3-N and TN loading simulation on both monthly and annual scales. For sediment, SWAT-EC performed better than SWAT2012 on a monthly time step basis, but no noticeable improvement was found at the annual scale. In addition, the performance of the uncalibrated SWAT-EC was comparable to other calibrated SWAT models reported in previous publications with respect to sediment and NO3-N loadings. These findings highlight the importance of advancing process representation in physically-based models to improve model credibility, particularly in ungauged basins.

2.
Proc Natl Acad Sci U S A ; 111(52): 18530-5, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512489

RESUMO

A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km(2) (as a 5-y running average) set by the national Gulf of Mexico Task Force's Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km(2) can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km(2) at a cost of $5.6 billion annually).

3.
Environ Sci Technol ; 50(13): 6991-7000, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27243625

RESUMO

Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.


Assuntos
Agricultura , Rios , Monitoramento Ambiental , Mississippi , Nitrogênio , Fósforo
4.
Endocr Pract ; 21(6): 590-4, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25716629

RESUMO

OBJECTIVE: Presently, no clinical tools are available to diagnose the metastatic potential of medullary thyroid cancer (MTC) at disease presentation. Surveillance with calcitonin (Ct) and carcinoembryonic antigen (CEA) is currently recommended for the observation and diagnosis of metastatic disease after initial treatment of MTC. Recently, carbohydrate antigen (CA)19-9 staining has been associated with aggressive forms of MTC and metastatic spread. This pilot study explored whether positive CA19-9 staining of MTC tissue is associated with its metastatic potential. METHODS: Sixteen cases of MTC were identified, and tissue specimens were immunostained for CA 19-9 and other MTC tumor markers. Clinical information about patients' MTC was collected through a retrospective chart review. RESULTS: Overall, 63% of the specimens stained positive for CA19-9. The median size of positively staining specimens was 2.6 cm (interquartile range [IQR] 1.2-3.2) compared to 0.7 cm (0.5-1.2) in negatively staining MTC specimens (P = .04). All specimens from patients diagnosed with stage IV MTC stained positive for CA19-9, compared to only 40% of cases that were classified as stages I to III (P = .03). Furthermore, 100% of the primary specimens that were documented to have metastatic spread stained positive for CA19-9. The sensitivity for ruling out stage IV MTC based on negative staining for CA 19-9 was 100%. CONCLUSION: Based on these results, we conclude that negative staining of MTC for CA19-9 may be associated with its decreased metastatic potential.


Assuntos
Antígeno CA-19-9/análise , Carcinoma Neuroendócrino/química , Neoplasias da Glândula Tireoide/química , Adolescente , Adulto , Idoso , Carcinoma Neuroendócrino/patologia , Criança , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Neoplasias da Glândula Tireoide/patologia
5.
J Environ Qual ; 43(5): 1601-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25603246

RESUMO

Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation.

6.
J Environ Qual ; 43(1): 55-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602540

RESUMO

Sediment delivery from hillslopes to rivers is spatially variable and may lead to long-term delays between initial erosion and related sediment yield at the watershed outlet. Consideration of spatial variability is important for developing sound strategies for water quality improvement and soil protection at the watershed scale. Hence, the Soil and Water Assessment Tool (SWAT) was modified and tested in this study to simulate the landscape transport capacity of sediment. The study area was the steeply sloped Arroio Lino watershed in southern Brazil. Observed sediment yield data at the watershed outlet were used to calibrate and validate a modified SWAT model. For the calibration period, the modified model performed better than the unaltered SWAT2009 version; the models achieved Nash-Sutcliffe efficiency (NSE) values of 0.7 and -0.1, respectively. Nash-Sutcliffe efficiencies were less for the validation period, but the modified model's NSE was higher than the unaltered model (-1.4 and -12.1, respectively). Despite the relatively low NSE values, the results of this first test are promising because the model modifications lowered the percent bias in sediment yield from 73 to 18%. Simulation results for the modified model indicated that approximately 60% of the mobilized soil is deposited along the landscape before it reaches the river channels. This research demonstrates the modified model's ability to simulate sediment yield in watersheds with steep slopes. The results suggest that integration of the sediment deposition routine in SWAT increases accuracy in steeper areas while significantly improving its ability to predict the spatial distribution of sediment deposition areas. Further work is needed regarding (i) improved strategies for spatially distributed sediment transport measurements (for improving process knowledge and model evaluation) and (ii) extensive model tests in other well instrumented experimental watersheds with differing topographic configurations and land uses.

7.
Angew Chem Int Ed Engl ; 53(14): 3688-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591294

RESUMO

Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2-alkyl-dihydrobenzoazepin-5-ones. These seven-membered-ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium-catalyzed allylic substitution with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems.


Assuntos
Aldeídos/química , Alcenos/química , Ródio/química , Aminação , Catálise , Estrutura Molecular , Estereoisomerismo
8.
Earths Future ; 12(6): 1-17, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993973

RESUMO

Climate impacts increasingly unfold in interlinked systems of people, nature, and infrastructure. The cascading consequences are revealing sometimes surprising connections across sectors and regions, and prospects for climate responses also depend on complex, difficult-to-understand interactions. In this commentary, we build on the innovations of the United States Fifth National Climate Assessment to suggest a framework for understanding and responding to complex climate challenges. This approach involves: (a) integration of disciplines and expertise to understand how intersectionality shapes complex climate impacts and the wide-ranging effects of climate responses, (b) collaborations among diverse knowledge holders to improve responses and better encompass intersectionality, and (c) sustained experimentation with and learning about governance approaches capable of handling the complexity of climate change. Together, these three pillars underscore that usability of climate-relevant knowledge requires transdisciplinary coordination of research and practice. We outline actionable steps for climate research to incorporate intersectionality, integration, and innovative governance, as is increasingly necessary for confronting climate complexity and sustaining equitable, ideally vibrant climate futures.

9.
J Environ Qual ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872320

RESUMO

Texas Gulf is one of the 18 regional sites that is part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) Network and focuses on cropland and integrated grazing land research in Central Texas, addressing challenges posed by soil characteristics, climate variability, and urbanization. This paper provides brief site descriptions of the two Cropland Common Experiments being conducted in the Texas Gulf LTAR region, emphasizing conservation tillage practices and precision agriculture techniques. The plot-scale study is located in Temple, TX, at the USDA-ARS Grassland, Soil and Water Research Laboratory and examines conventional tillage, strip tillage, and no tillage practices. The field-scale study, located in Riesel, TX, at the USDA-ARS Riesel Watersheds, assesses the impact of no tillage, cover crops, fertility management, adaptive management, and precision conservation on crop yield, profitability, and environmental footprint. Key measurements include soil and plant analyses, greenhouse gas fluxes, runoff water quantity and quality, and field operations recorded with precision agriculture equipment. Despite challenges posed by urban encroachment, future research aims to incorporate new technologies, such as unmanned ground vehicles, to enhance sustainability and productivity of the agricultural landscape. These experiments provide valuable insights for stakeholders, contributing to the development of sustainable agricultural practices tailored to the unique challenges within the Texas Gulf LTAR region.

10.
J Environ Qual ; 42(6): 1699-710, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602410

RESUMO

Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices.

11.
ACG Case Rep J ; 10(2): e00929, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36788790

RESUMO

Ozanimod is an oral sphingosine-1-phosphate receptor modulator. Although it can be an effective drug for the induction and maintenance of remission in patients with moderately to severely active ulcerative colitis, there have been a few reported cases of various malignancies after exposure to this small molecule. We describe a unique case of biopsy-proven Kaposi sarcoma of the skin and colon in a patient with biologic-resistant ulcerative colitis after treatment with ozanimod for 2 months. Given the potential risk of malignancy associated with this agent, physicians should be aware of this rare adverse event.

12.
Mol Imaging Biol ; 25(5): 867-874, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36882605

RESUMO

PURPOSE: Manocept™ constructs are mannosylated amine dextrans (MADs) that bind with high affinity to the mannose receptor, CD206. Tumor-associated macrophages (TAMs) are the most numerous immune cells in the tumor microenvironment and a recognized target for tumor imaging and cancer immunotherapies. Most TAMs express CD206, suggesting utility of MADs to deliver imaging moieties or therapeutics to TAMs. The liver Kupffer cells also express CD206, making them an off-target localization site when targeting CD206 on TAMs. We evaluated TAM targeting strategies using two novel MADs differing in molecular weight in a syngeneic mouse tumor model to determine how varying MAD molecular weights would impact tumor localization. Increased mass dose of the non-labeled construct or a higher molecular weight (HMW) construct were also used to block liver localization and enhance tumor to liver ratios. PROCEDURES: Two MADs, 8.7 kDa and 22.6 kDa modified with DOTA chelators, were synthesized and radiolabeled with 68Ga. A HMW MAD (300 kDa) was also synthesized as a competitive blocking agent for Kupffer cell localization. Balb/c mice, with and without CT26 tumors, underwent dynamic PET imaging for 90 min followed by biodistribution analyses in selected tissues. RESULTS: The new constructs were readily synthesized and labeled with 68Ga with ≥ 95% radiochemical purity in 15 min at 65 °C. When injected at doses of 0.57 nmol, the 8.7 kDa MAD provided 7-fold higher 68Ga tumor uptake compared to the 22.6 kDa MAD (2.87 ± 0.73%ID/g vs. 0.41 ± 0.02%ID/g). Studies with increased mass of unlabeled competitors showed reduced liver localization of the [68Ga]MAD-8.7 to varying degrees without significant reductions in tumor localization, resulting in enhanced tumor to liver signal ratios. CONCLUSION: Novel [68Ga]Manocept constructs were synthesized and studied in in vivo applications, showing that the smaller MAD localized to CT26 tumors more effectively than the larger MAD and that the unlabeled HMW construct could selectively block liver binding of [68Ga]MAD-8.7 without diminishing the localization to tumors. Promising results using the [68Ga]MAD-8.7 show a potential path to clinical applications.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Camundongos , Animais , Radioisótopos de Gálio/química , Peso Molecular , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos
13.
Sci Data ; 10(1): 863, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049456

RESUMO

The current methods for designing hydrological infrastructure rely on precipitation-based intensity-duration-frequency curves. However, they cannot accurately predict flooding caused by snowmelt or rain-on-snow events, potentially leading to underdesigned infrastructure and property damage. To address these issues, next-generation intensity-duration-frequency (NG-IDF) curves have been developed for the open condition, characterizing water available for runoff from rainfall, snowmelt, and rain-on-snow. However, they lack consideration of land use land cover (LULC) factors, which can significantly affect runoff processes. We address this limitation by expanding open area NG-IDF dataset to include eight vegetated LULCs over the continental United States, including forest (deciduous, evergreen, mixed), shrub, grass, pasture, crop, and wetland. This NG-IDF 2.0 dataset offers a comprehensive analysis of hydrological extreme events and their associated drivers under different LULCs at a continental scale. It will serve as a useful resource for improving standard design practices and aiding in the assessment of infrastructure design risks. Additionally, it provides useful insights into how changes in LULC impact flooding magnitude, mechanisms, timing, and snow water supply.

14.
J Am Chem Soc ; 134(20): 8380-3, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22563701

RESUMO

The rhodium-catalyzed regio- and enantioselective amination of racemic tertiary allylic trichloroacetimidates with a variety of aniline nucleophiles is a direct and efficient route to chiral α,α-disubstituted allylic N-arylamines. We describe the first dynamic kinetic asymmetric transformations of racemic tertiary allylic electrophiles with anilines utilizing a chiral diene-ligated rhodium catalyst. The method allows for the formation of α,α-disubstituted allylic N-arylamines in moderate to good yields with good to excellent levels of regio- and enantioselectivity.


Assuntos
Acetamidas/química , Compostos Alílicos/química , Compostos de Anilina/química , Cloroacetatos/química , Ródio/química , Compostos Alílicos/síntese química , Aminação , Aminas/síntese química , Aminas/química , Compostos de Anilina/síntese química , Catálise , Cinética , Estereoisomerismo
15.
J Environ Qual ; 40(3): 807-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546666

RESUMO

Well-calibrated models are cost-effective tools to quantify environmental benefits of conservation practices, but lack of data for parameterization and evaluation remains a weakness to modeling. Research was conducted in southwestern Oklahoma within the Cobb Creek subwatershed (CCSW) to develop cost-effective methods to collect stream channel parameterization and evaluation data for modeling in watersheds with sparse data. Specifically, (i) simple stream channel observations obtained by rapid geomorphic assessment (RGA) were used to parameterize the Soil and Water Assessment Tool (SWAT) model stream channel variables before calibrating SWAT for streamflow and sediment, and (ii) average annual reservoir sedimentation rate, measured at the Crowder Lake using the acoustic profiling system (APS), was used to cross-check Crowder Lake sediment accumulation rate simulated by SWAT. Additionally, the calibrated and cross-checked SWAT model was used to simulate impacts of riparian forest buffer (RF) and bermudagrass [ (L.) Pers.] filter strip buffer (BFS) on sediment yield and concentration in the CCSW. The measured average annual sedimentation rate was between 1.7 and 3.5 t ha yr compared with simulated sediment rate of 2.4 t ha yr Application of BFS across cropped fields resulted in a 72% reduction of sediment delivery to the stream, while the RF and the combined RF and BFS reduced the suspended sediment concentration at the CCSW outlet by 68 and 73%, respectively. Effective riparian practices have potential to increase reservoir life. These results indicate promise for using the RGA and APS methods to obtain data to improve water quality simulations in ungauged watersheds.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios , Calibragem , Simulação por Computador/economia , Cynodon/crescimento & desenvolvimento , Monitoramento Ambiental/economia , Sedimentos Geológicos/análise , Oklahoma , Reprodutibilidade dos Testes , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Movimentos da Água , Abastecimento de Água/análise
16.
Ecol Appl ; 20(6): 1542-55, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20945758

RESUMO

In 2008, the hypoxic zone in the Gulf of Mexico, measuring 20 720 km2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This study combines the tools of evolutionary computation with a water quality model and cost data to develop a trade-off frontier for the Upper Mississippi River Basin specifying the least cost of achieving nutrient reductions and the location of the agricultural conservation practices needed. The frontier allows policymakers and stakeholders to explicitly see the trade-offs between cost and nutrient reductions. For example, the cost of reducing annual nitrate-N loadings by 30% is estimated to be US$1.4 billion/year, with a concomitant 36% reduction in P and the cost of reducing annual P loadings by 30% is estimated to be US$370 million/year, with a concomitant 9% reduction in nitrate-N.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Oxigênio/química , Poluentes Químicos da Água/química , Poluição Química da Água/economia , Poluição Química da Água/prevenção & controle , Algoritmos , Simulação por Computador , Ecossistema , Modelos Teóricos , Oceanos e Mares , Rios , Água do Mar/química , Movimentos da Água
17.
Sci Total Environ ; 722: 137737, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208241

RESUMO

Temporal scale is an important keyword in environmental hydrology but little information is available in the relationship between correlation and time variability degree of hydro-environmental variables at a watershed scale, which makes it difficult to design effective real-time management strategies. Here we take the Yanhe River Watershed as a study case to simulate and inventory the fractal characteristics of correlation and time variability degree of runoff, rainfall, and NH4+-N at different time scales, focusing on the long-term series of 1984-2012. (i) The coupled modeling framework based on SWAT (Soil and Water Assessment Tool), statistics and fractal theory is a time series analysis method that is particularly suitable for the evaluation of long-range correlation of non-linear time series. The Nash-Sutcliffe Efficiency coefficient (NSE), R2 and PBIAS during the calibration and verification period proved the reliability and acceptability of the established SWAT model in modeling multi-time scale runoff and NH4+-N load in the upstream catchment of Ganguyi hydrological station. (ii) Runoffs at all time scales showed positive correlations with rainfall although the significant level had a certain time scale differences. More interestingly, the correlation between NH4+-N loss and runoff at different time scales was significantly higher than that of rainfall. (iii) Each hydro-environmental variable has different fractal and time variation characteristics at different time scales, and the correlation levels between different hydrological variables are not completely consistent with their own time variability degrees at different time scales. These findings point to a fundamental challenge in managing regions with leading infiltration-excess runoff and uneven nutrient loading because the meteorological and hydrological variables in these regions exhibit the strongest temporal variability, which will affect the effective allocation and implementation in management practices.

18.
Sci Total Environ ; 747: 141112, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791405

RESUMO

How anticipated climate change might affect long-term outcomes of present-day agricultural conservation practices remains a key uncertainty that could benefit water quality and biodiversity conservation planning. To explore this issue, we forecasted how the stream fish communities in the Western Lake Erie Basin (WLEB) would respond to increasing amounts of agricultural conservation practice (ACP) implementation under two IPCC future greenhouse gas emission scenarios (RCP4.5: moderate reductions; RCP8.5: business-as-usual conditions) during 2020-2065. We used output from 19 General Circulation Models to drive linked agricultural land use (APEX), watershed hydrology (SWAT), and stream fish distribution (boosted regression tree) models, subsequently analyzing how projected changes in habitat would influence fish community composition and functional trait diversity. Our models predicted both positive and negative effects of climate change and ACP implementation on WLEB stream fishes. For most species, climate and ACPs influenced species in the same direction, with climate effects outweighing those of ACP implementation. Functional trait analysis helped clarify the varied responses among species, indicating that more extreme climate change would reduce available habitat for large-bodied, cool-water species with equilibrium life-histories, many of which also are of importance to recreational fishing (e.g., northern pike, smallmouth bass). By contrast, available habitat for warm-water, benthic species with more periodic or opportunistic life-histories (e.g., northern hogsucker, greater redhorse, greenside darter) was predicted to increase. Further, ACP implementation was projected to hasten these shifts, suggesting that efforts to improve water quality could come with costs to other ecosystem services (e.g., recreational fishing opportunities). Collectively, our findings demonstrate the need to consider biological outcomes when developing strategies to mitigate water quality impairment and highlight the value of physical-biological modeling approaches to agricultural and biological conservation planning in a changing climate.


Assuntos
Ecossistema , Rios , Agricultura , Animais , Mudança Climática , Conservação dos Recursos Naturais , Hidrologia
19.
Sci Total Environ ; 669: 512-526, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884273

RESUMO

The application of pesticides in agriculture is a widely-used way to alleviate pest stresses. However, it also introduces various environmental concerns due to the offsite movement of pesticide residues towards receiving water bodies. While the application of process-based modeling approaches can provide quantitative information on pesticide exposure, there are nonetheless growing requirements for model development and improvement to better represent various hydrological and physico-chemical conditions at watershed scale, and for better model integration to address environmental, ecological and economic concerns. The Soil and Water Assessment Tool (SWAT) is an ecohydrological model used in over 3000 published studies, including about 50 for simulating pesticide fate and transport at the watershed scale. To better understand its strengths and limitations, we conducted a rigorous review of published studies that have used SWAT for pesticide modeling. This review provides recommendations for improving the interior algorithms (fate simulation, pathway representation, transport/pollution control, and other hydrological related improvement) to better represent natural conditions, and for further extension of pesticide exposure modeling using SWAT by linking it with other models or management tools to effectively address the various concerns of environmental researchers and local decision makers. Going beyond past studies, we also recommend future improvement to fill research gaps in developing modularized field level simulation, improved BMPs, new in-pond and in-stream modules, and the incorporation of soft data. Our review pointed out a new insight of pesticide fate and transport modeling at watershed level, which should be seen as steps leading to the direction for model development, as well as better addressing management concerns of local stakeholders for model implementation.

20.
Sci Adv ; 5(3): eaav1139, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30906863

RESUMO

Predatory fish introduction can cause cascading changes within recipient freshwater ecosystems. Linkages to avian and terrestrial food webs may occur, but effects are thought to attenuate across ecosystem boundaries. Using data spanning more than four decades (1972-2017), we demonstrate that lake trout invasion of Yellowstone Lake added a novel, piscivorous trophic level resulting in a precipitous decline of prey fish, including Yellowstone cutthroat trout. Plankton assemblages within the lake were altered, and nutrient transport to tributary streams was reduced. Effects across the aquatic-terrestrial ecosystem boundary remained strong (log response ratio ≤ 1.07) as grizzly bears and black bears necessarily sought alternative foods. Nest density and success of ospreys greatly declined. Bald eagles shifted their diet to compensate for the cutthroat trout loss. These interactions across multiple trophic levels both within and outside of the invaded lake highlight the potential substantial influence of an introduced predatory fish on otherwise pristine ecosystems.


Assuntos
Ecossistema , Espécies Introduzidas , Comportamento Predatório/fisiologia , Truta/fisiologia , Animais , Águias/fisiologia , Cadeia Alimentar , Lagos , Parques Recreativos , Dinâmica Populacional , Rios , Estados Unidos , Ursidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA