Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21506, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811695

RESUMO

Purinergic signaling regulates several renal physiological and pathophysiological processes. Extracellular vesicles (EVs) are nanoparticles released by most cell types, which, in non-renal tissues, modulate purinergic signaling. The aim of this study was to investigate the effect of EVs from renal proximal tubule (HK2) and collecting duct cells (HCD) on intra- and intersegment modulation of extracellular ATP levels, the underlying molecular mechanisms, and the impact on the expression of the alpha subunit of the epithelial sodium channel (αENaC). HK2 cells were exposed to HK2 EVs, while HCD cells were exposed to HK2 and HCD EVs. Extracellular ATP levels and αENaC expression were measured by chemiluminescence and qRT-PCR, respectively. ATPases in EV populations were identified by mass spectrometry. The effect of aldosterone was assessed using EVs from aldosterone-treated cells and urinary EVs (uEVs) from primary aldosteronism (PA) patients. HK2 EVs downregulated ectonucleoside-triphosphate-diphosphohydrolase-1 (ENTPD1) expression, increased extracellular ATP and downregulated αENaC expression in HCD cells. ENTPD1 downregulation could be attributed to increased miR-205-3p and miR-505 levels. Conversely, HCD EVs decreased extracellular ATP levels and upregulated αENaC expression in HCD cells, probably due to enrichment of 14-3-3 isoforms with ATPase activity. Pretreatment of donor cells with aldosterone or exposure to uEVs from PA patients enhanced the effects on extracellular ATP and αENaC expression. We demonstrated inter- and intrasegment modulation of renal purinergic signaling by EVs. Our findings postulate EVs as carriers of information along the renal tubules, whereby processes affecting EV release and/or cargo may impact on purinergically regulated processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Vesículas Extracelulares/fisiologia , Regulação da Expressão Gênica , Hiperaldosteronismo/patologia , Túbulos Renais/metabolismo , Células Epiteliais/citologia , Canais Epiteliais de Sódio/genética , Humanos , Hiperaldosteronismo/metabolismo , Túbulos Renais/citologia
2.
J Am Soc Nephrol ; 32(5): 1210-1226, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33782168

RESUMO

BACKGROUND: Urinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear. METHODS: Urine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization. RESULTS: Urine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47-0.95) and patients (R2 0.41-0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers. Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment-specific EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Nefropatias/diagnóstico , Nefropatias/urina , Adulto , Biomarcadores/urina , Estudos de Casos e Controles , Creatinina/urina , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Urinálise
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805981

RESUMO

Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Fator de Transcrição RelA/metabolismo , Adolescente , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/farmacologia , Dano ao DNA , Feminino , Humanos , Inflamação , Leupeptinas/farmacologia , Nanopartículas , Comunicação Parácrina/efeitos dos fármacos , Fenótipo , Fenilenodiaminas/farmacologia , Cordão Umbilical/citologia
4.
J Cell Physiol ; 232(1): 225-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27138291

RESUMO

The general consensus is that milk promotes bone growth and density because is a source of calcium and contains components that enhance intestinal calcium uptake or directly affect bone metabolism. In this study, we investigated the effect of bovine-derived milk 100,000 g pellet (P100), which contains nanoparticles (<220 nm) including extracellular vesicles, on osteoclast differentiation and bone resorption. Bone marrow-derived osteoclast precursor cells were differentiated into osteoclasts by M-CSF and RANKL (control) and in the presence of milk P100. Milk P100 treatment until day 4 increased the number of TRAP-positive mononuclear cells and small (≤5 nuclei) osteoclasts. The number of large (≥6 nuclei) osteoclasts remained the same. These alterations were associated with increased expression of TRAP, NFATc1, and c-Fos. Cells seeded in a calcium-phosphate coated plate or bone slices showed reduced resorption area when exposed to milk P100 during the differentiation phase and even after osteoclast formation. Interestingly, milk P100 treatment enhanced Cathepsin K expression but reduced Carbonic Anhydrase 2 gene expression. Moreover, intracellular acid production was also decreased by milk P100 treatment. Oral delivery of milk P100 to female DBA1/J mice for 7 weeks did not alter bone area; however, increased osteoclast number and area in tibia without changes in serum RANKL and CTX-I levels. We showed for the first time the effect of milk P100 on osteoclast differentiation both in vitro and in vivo and found that milk P100 increased the formation of small osteoclasts but this does not lead to more bone resorption probably due to reduced acid secretion. J. Cell. Physiol. 232: 225-233, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Leite/metabolismo , Nanopartículas/administração & dosagem , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/metabolismo , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Ann Rheum Dis ; 74(11): 2084-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25028707

RESUMO

OBJECTIVES: Rheumatoid arthritis is a chronic destructive autoimmune disease, but the course is unpredictable in individual patients. An attractive treatment would provide a disease-regulated therapy that offers personalised drug delivery. Therefore, we expressed the anti-inflammatory interleukin-10 (IL-10) gene under the control of inflammation-dependent promoters in a mouse model of arthritis. METHODS: Proximal promoters of S100a8, Cxcl1, Mmp13, Saa3, IL-1b and Tsg6 were selected by whole-genome expression analysis of inflamed synovial tissues from arthritic mice. Mice were injected intraarticularly in knee joints with lentiviral vectors expressing a luciferase reporter or the therapeutic protein IL-10 under control of the Saa3 or Mmp13 promoter. After 4 days, arthritis was induced by intraarticular injection of streptococcal cell walls (SCW). At different time points after arthritis induction, in vivo bioluminescent imaging was performed and knee joints were dissected for histological and RNA analysis. RESULTS: The disease-regulated promoter-luciferase reporter constructs showed different activation profiles during the course of the disease. The Saa3 and Mmp13 promoters were significantly induced at day 1 or day 4 after arthritis induction respectively and selected for further research. Overexpression of IL-10 using these two disease-inducible promoters resulted in less synovitis and markedly diminished cartilage proteoglycan depletion and in upregulation of IL-1Ra and SOCS3 gene expression. CONCLUSIONS: Our study shows that promoters of genes that are expressed locally during arthritis can be candidates for disease-regulated overexpression of biologics into arthritic joints, as shown for IL-10 in SCW arthritis. The disease-inducible approach might be promising for future tailor-made local gene therapy in arthritis.


Assuntos
Artrite Experimental/terapia , Cartilagem Articular/metabolismo , Terapia Genética , Interleucina-10 , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo , Membrana Sinovial/imunologia , Sinovite/terapia , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide , Parede Celular/imunologia , Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proteína Amiloide A Sérica/genética , Streptococcus/imunologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Membrana Sinovial/patologia , Sinovite/imunologia , Sinovite/patologia
6.
Mol Imaging ; 13: 1-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24881106

RESUMO

Rheumatoid arthritis (RA) and osteoarthritis (OA) are serologically and clinically distinctive, but at the local level, both diseases have many molecular pathways in common. In vivo molecular imaging can unravel the local pathologic processes involved in both diseases. In this study, we investigated matrix metalloproteinase (MMP) and cathepsin activity during cartilage destruction, in an RA and an OA mouse model, using biophotonic imaging of substrate-based probes. Mice with collagen-induced arthritis (CIA) or destabilization of the medial meniscus (DMM) were imaged using near-infrared fluorescent probes, activated by several cathepsins or MMPs. Fluorescence signal intensity was compared to synovial gene expression, histology, and cartilage staining of a neoepitope of aggrecan cleaved by MMPs with the amino acids DIPEN. Increased cathepsin and MMP activity was seen during CIA, whereas the DMM model only showed increased MMP activity. DIPEN expression was seen only during CIA. A possible explanation can be differences in gene expressions; MMP3 and -13, known to produce DIPEN neoepitopes, were upregulated in the CIA model, whereas MMP12, known to be involved in elastin degradation and chemokine inhibition, was upregulated in the DMM model. Thus, molecular imaging showed no cathepsin activity at the time of cartilage damage in the DMM model, whereas both cathepsins and MMPs are active in the CIA model during disease progression.


Assuntos
Artrite Reumatoide/metabolismo , Catepsinas/análise , Metaloproteinases da Matriz/análise , Imagem Molecular/métodos , Osteoartrite/metabolismo , Animais , Artrite Experimental/metabolismo , Catepsinas/metabolismo , Morte Celular , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/efeitos adversos , Colágeno Tipo II/imunologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Joelho de Quadrúpedes/química , Joelho de Quadrúpedes/metabolismo , Joelho de Quadrúpedes/patologia
7.
Mol Nutr Food Res ; 68(3): e2300445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087782

RESUMO

SCOPE: Bovine milk extracellular vesicles (MEVs) have demonstrated therapeutic potential in regulating bone cell activity. However, the outcome of their use on alveolar bone loss has not yet been demonstrated. METHODS AND RESULTS: This study evaluates the effect of oral administration of MEVs on ovariectomized (OVX) mice. There is a reduced height of the alveolar bone crest in OVX mice by MEVs treatment, but the alveolar bone parameters are not altered. OVX mice are then submitted to a force-induced bone remodeling model by orthodontic tooth movement (OTM). MEVs-treated mice have markedly less bone remodeling movement, unlike the untreated OVX mice. Also, OVX mice treated with MEVs show an increased number of osteoblasts and osteocytes associated with higher sclerostin expression and reduce osteoclasts in the alveolar bone. Although the treatment with MEVs in OVX mice does not show differences in root structure in OTM, few odontoclasts are observed in the dental roots of OVX-treated mice. Compared to untreated mice, maxillary and systemic RANKL/OPG ratios are reduced in OVX mice treated with MEVs. CONCLUSION: Treatment with MEVs results in positive bone cell balance in the alveolar bone and dental roots, indicating its beneficial potential in treating alveolar bone loss in the nutritional context.


Assuntos
Perda do Osso Alveolar , Camundongos , Animais , Feminino , Humanos , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/metabolismo , Leite , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Remodelação Óssea/fisiologia , Ovariectomia
8.
Ann Rheum Dis ; 72(8): 1407-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23291389

RESUMO

OBJECTIVE: A prominent role of Toll-like receptor 4 (TLR4) in arthritis is emerging. TLR4 is functional in immune cells and stromal cells. The aim was to investigate the involvement of TLR4 in bone marrow (BM)-derived and resident cells in arthritis. METHODS: Reciprocal sex-mismatched BM transplantation was performed between IL-1Ra(-/-)TLR4(+/+) and IL-1Ra(-/-)TLR4(-/-) double knockout animals in Balb/c background. Arthritis was assessed macroscopically and by histopathology. Immunity was evaluated by splenic cytokine production and flow cytometry in draining lymph node (DLN) cells. RESULTS: Arthritis progression was reduced to a similar extent in animals lacking TLR4 on BM-derived, resident cells or both. Histology revealed that joint inflammation was partially TLR4-dependent in either BM-derived or resident cells. TLR4 plays an additive role in BM-derived and resident cells in promoting cartilage erosion. By contrast, TLR4 was equally important in BM-derived and resident cells in mediating bone erosion. Systemically, TLR4 in both BM-derived and resident cells contributed to IL-17 production by splenic T-cells, whereas in the DLNs of arthritic joints this was not the case. Interestingly, in DLN, the dominant cells producing IL-17 were CD4 negative, and cell numbers were determined by TLR4 in the BM-derived cells. CONCLUSIONS: TLR4 is necessary in both BM-derived and resident cells for full-blown joint swelling, inflammation and bone erosion. Furthermore, TLR4 on BM-derived and tissue-resident cells show an additive effect in cartilage destruction. Interestingly, TLR4 on BM-derived and tissue-resident cells are both required for IL-17 production in spleen, but only in BM-derived cells in DLN.


Assuntos
Artrite Experimental/metabolismo , Células da Medula Óssea/metabolismo , Joelho de Quadrúpedes/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Cartilagem Articular/patologia , Feminino , Interleucina-17/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Baço/metabolismo , Joelho de Quadrúpedes/imunologia , Joelho de Quadrúpedes/patologia
9.
Arthritis Rheum ; 64(10): 3313-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22576756

RESUMO

OBJECTIVE: To determine the expression of suppressor of cytokine signaling 3 (SOCS-3) in human articular chondrocytes and its functional consequences. METHODS: Chondrocytes were isolated from the cartilage of patients with osteoarthritis (OA), patients with rheumatoid arthritis (RA), and trauma patients and from the healthy cartilage of patients with a femoral neck fracture. The human chondrocyte cell line G6 and primary bovine chondrocytes were used in validation experiments. SOCS-3 messenger RNA (mRNA) expression was measured by quantitative polymerase chain reaction, and SOCS-3 protein levels were determined by Western blotting and immunohistochemical analysis. To ascertain the role of SOCS-3 in the chondrocyte response to interleukin-1ß (IL-1ß) or lipopolysaccharide (LPS), the expression of SOCS3 was either reduced by small interfering RNA or enhanced by viral transduction. RESULTS: The expression of SOCS-3 mRNA (but not that of SOCS-1 mRNA) was significantly enhanced in chondrocytes obtained from OA cartilage (mean ± SD ΔC(t) 3.4 ± 1.0) and RA cartilage (ΔC(t) 3.4 ± 1.4) compared with cartilage obtained from patients with femoral neck fracture (ΔC(t) 5.3 ± 1.2). The expression of SOCS3 correlated significantly with that of other genes known to be expressed in arthritic chondrocytes, such as MMP13 (r = 0.743), ADAMTS4 (r = 0.779), and ADAMTS5 (r = 0.647), and an inverse relationship was observed with COL2A1 (r = -0.561). Up-regulation of SOCS-3 by IL-1 in G6 chondrocytes and its spontaneous expression in OA chondrocytes were reduced by mithramycin, a specific inhibitor of transcription factor Sp-1. Overexpression of SOCS-3 in bovine chondrocytes reduced IL-1- and LPS-induced nitric oxide production and insulin-like growth factor 1-induced proteoglycan synthesis. Interestingly, a similar impairment of function was observed in OA chondrocytes, which was partially restored by SOCS-3 gene knockdown. CONCLUSION: This study demonstrated that both SOCS-3 mRNA and SOCS-3 protein are expressed in human arthritic chondrocytes and affect cellular responses involved in cartilage pathology.


Assuntos
Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS4 , Proteína ADAMTS5 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Bovinos , Linhagem Celular , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Feminino , Humanos , Interleucina-1/farmacologia , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Pró-Colágeno N-Endopeptidase/genética , Pró-Colágeno N-Endopeptidase/metabolismo , Proteoglicanas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Regulação para Cima/efeitos dos fármacos
10.
Arthritis Rheum ; 64(6): 1838-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22147588

RESUMO

OBJECTIVE: Increasing evidence indicates the involvement of Toll-like receptors (TLRs) in the progression of arthritis; however, the contribution of the two signaling pathways used by TLRs, which are mediated by myeloid differentiation factor 88 (MyD88) and TRIF, remains unclear. The objective of this study was to investigate the specific roles of MyD88 and TRIF in chronic experimental arthritis and the accompanying adaptive immune responses. METHODS: Chronic arthritis was induced in wild-type, MyD88(-/-) , and Trif(lps2) (TRIF(-/-) ) mice by repetitive intraarticular injections of streptococcal cell wall (SCW) fragments. SCW-specific T cell and B cell responses, joint swelling, and histopathologic changes were analyzed during chronic arthritis. RESULTS: Both MyD88 and TRIF pathways contributed to antigen-specific T cell proliferation and antibody production, with the MyD88 pathway playing the dominant role. The severity of joint swelling and synovial inflammation, as well as the histopathologic damage to cartilage and bone, was strongly dependent on MyD88 signaling, whereas TRIF was redundant. MyD88 signaling was critical for the development of pathogenic T cell response (i.e., interleukin-17 [IL-17] production) in response to SCW antigen. Interestingly, when the T cell-dependent phase was prolonged, TRIF signaling appeared to down-regulate bone erosion, an effect accompanied by an inhibitory effect on IL-17 production. CONCLUSION: This study reveals a central role of MyD88 and a counterregulatory function of TRIF in T cell-driven arthritis. The findings provide a rationale for a pathway-specific interference in order to block the pathogenic features and to preserve or stimulate the beneficial aspects of TLR signaling.


Assuntos
Imunidade Adaptativa , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Artrite Experimental/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proliferação de Células , Interleucina-17/imunologia , Interleucina-17/metabolismo , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA