Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731604

RESUMO

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Assuntos
Diferenciação Celular , Oligossacarídeos , Osteoclastos , Pleurotus , Transdução de Sinais , Animais , Camundongos , beta-Glucanas/farmacologia , beta-Glucanas/química , Diferenciação Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Pleurotus/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Protein Expr Purif ; 210: 106320, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301245

RESUMO

The native Cry4Aa δ-endotoxin produced exclusively in Bacillus thuringiensis during sporulation as a ∼130-kDa inactive protoxin is confined within the parasporal crystalline inclusion that dissolves at alkaline pH in the midgut lumen of mosquito larvae. Here, the recombinant Cry4Aa toxin over-expressed in Escherichia coli at 30 °C as an alkaline-solubilizable inclusion was found inevitably lost during isolation from the cell lysate (pH ∼6.5) of which host cells were pre-suspended in distilled water (pH ∼5.5). When 100 mM KH2PO4 (pH 5.0) was used as host cell-suspending buffer, the cell lysate's pH became more acidic (pH 5.5), allowing the expressed protoxin to be entirely retained in the form of crystalline inclusion rather than a soluble form, and thus high-yield recovery of the partially purified inclusion was obtained. Upon dialysis of the alkaline-solubilized protoxin against the KH2PO4 buffer, the protoxin precipitate was efficiently recovered and still exhibited high toxicity to Aedes aegypti mosquito larvae. Additionally, the precipitated protoxin was completely resolubilized in 50 mM Na2CO3 buffer (pH 9.0) and proteolytically processed by trypsin to produce the 65-kDa activated toxin comprising ∼47- and ∼20-kDa fragments. In silico structural analysis suggested that His154, His388, His536 and His572 were involved in a dissolution of the Cry4Aa inclusion at pH 6.5, conceivably through interchain salt bridge breakage. Altogether, such an optimized protocol described herein was effective for the preparation of alkaline-solubilizable inclusions of the recombinant Cry4Aa toxin in large amounts (>25 mg per liter culture) that would pave the way for further structure-function relationship studies of different Cry toxins.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Escherichia coli/genética , Diálise Renal , Endotoxinas/genética , Larva , Proteínas Hemolisinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
3.
J Biol Chem ; 290(34): 20793-20803, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26112409

RESUMO

The insecticidal feature of the three-domain Cry δ-endotoxins from Bacillus thuringiensis is generally attributed to their capability to form oligomeric pores, causing lysis of target larval midgut cells. However, the molecular description of their oligomerization process has not been clearly defined. Here a stable prepore of the 65-kDa trypsin-activated Cry4Ba mosquito-specific toxin was established through membrane-mimetic environments by forming an ∼200-kDa octyl-ß-D-glucoside micelle-induced trimer. The SDS-resistant trimer caused cytolysis to Sf9 insect cells expressing Aedes-mALP (a Cry4Ba receptor) and was more effective than a toxin monomer in membrane perturbation of calcein-loaded liposomes. A three-dimensional model of toxin trimer obtained by negative-stain EM in combination with single-particle reconstruction at ∼5 nm resolution showed a propeller-shaped structure with 3-fold symmetry. Fitting the three-dimensional reconstructed EM map with a 100-ns molecular dynamics-simulated Cry4Ba structure interacting with an octyl-ß-D-glucoside micelle showed relative positioning of individual domains in the context of the trimeric complex with a major protrusion from the pore-forming domain. Moreover, high-speed atomic force microscopy imaging at nanometer resolution and a subsecond frame rate demonstrated conformational transitions from a propeller-like to a globularly shaped trimer upon lipid membrane interactions, implying prepore-to-pore conversion. Real-time trimeric arrangement of monomers associated with L-α-dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid bicelle membranes was also envisaged by successive high-speed atomic force microscopy imaging, depicting interactions among three individual subunits toward trimer formation. Together, our data provide the first pivotal insights into the structural requirement of membrane-induced conformational changes of Cry4Ba toxin monomers for the molecular assembly of a prepore trimer capable of inserting into target membranes to generate a lytic pore.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Inseticidas/química , Células Sf9/efeitos dos fármacos , Aedes/citologia , Aedes/efeitos dos fármacos , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Dimiristoilfosfatidilcolina/química , Endotoxinas/genética , Endotoxinas/toxicidade , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucosídeos/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/toxicidade , Lipossomos/química , Micelas , Simulação de Dinâmica Molecular , Controle Biológico de Vetores , Conformação Proteica , Multimerização Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Células Sf9/citologia , Spodoptera/citologia , Spodoptera/efeitos dos fármacos , Ácidos Sulfônicos/química
4.
Biochem Biophys Res Commun ; 461(2): 300-6, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25871797

RESUMO

The interaction between Bacillus thuringiensis Cry toxins and their receptors on midgut cells of susceptible insect larvae is the critical determinant in toxin specificity. Besides GPI-linked alkaline phosphatase in Aedes aegypti mosquito-larval midguts, membrane-bound aminopeptidase N (AaeAPN) is widely thought to serve as a Cry4Ba receptor. Here, two full-length AaeAPN isoforms, AaeAPN2778 and AaeAPN2783, predicted to be GPI-linked were cloned and successfully expressed in Spodoptera frugiperda (Sf9) cells as 112- and 107-kDa membrane-bound proteins, respectively. In the cytotoxicity assay, Sf9 cells expressing each of the two AaeAPN isoforms showed increased sensitivity to the Cry4Ba mosquito-active toxin. Double immunolocalization revealed specific binding of Cry4Ba to each individual AaeAPN expressed on the cell membrane surface. Sequence analysis and homology-based modeling placed these two AaeAPNs to the M1 aminopeptidase family as they showed similar four-domain structures, with the most conserved domain II being the catalytic component. Additionally, the most variable domain IV containing negatively charged surface patches observed only in dipteran APNs could be involved in insect specificity. Overall results demonstrated that these two membrane-bound APN isoforms were responsible for mediating Cry4Ba toxicity against AaeAPN-expressed Sf9 cells, suggesting their important role as functional receptors for the toxin counterpart in A. aegypti mosquito larvae.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Aedes/química , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Antígenos CD13/química , Linhagem Celular , Interações Hospedeiro-Patógeno , Proteínas de Insetos/química , Larva/química , Larva/microbiologia , Larva/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
5.
Heliyon ; 9(11): e22365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38099006

RESUMO

Excessive osteoclast-mediated bone resorption is a critical cause of osteoporosis affecting many aging people worldwide. 5'-Methylthioadenosine (MTA) is a natural sulfur-containing nucleoside normally produced in prokaryotes, plants, yeast, and higher eukaryotes via polyamine metabolism. MTA affects various physiological responses particularly the inflammatory pathway in both normal and cancerous cells and modulates the activation of nuclear factor-κB involved in the osteoclastogenesis signalling process. While several studies have reported that natural products possess anti-osteoclastogenesis phenolics and flavonoids, the effect of nucleoside derivatives on osteoclastogenesis remains limited. Therefore, this study aimed to explore the molecular mechanisms by which MTA affects pre-osteoclastic RAW 264.7 cells as a potential alleviation compound for inflammation-mediated bone loss. Osteoclasts were established by incubating RAW264.7 macrophage cells with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor, the vital cytokines for activation of osteoclast differentiation. Cell viability was measured using MTT assays at 24, 48, and 72 h. The suppressive effect of MTA on RANKL-induced osteoclast differentiation and function was assessed using tartrate-resistant acid phosphatase (TRAP) analysis, qRT-PCR, and pit formation, Western blot, and immunofluorescence assays. MTA showed dose-dependent anti-osteoclastogenic activity by inhibiting TRAP-positive cell and pit formation and reducing essential digestive enzymes, including TRAP, cathepsin K, and matrix metallopeptidase 9. MTA was observed to suppress the osteoclast transduction pathway through (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB); it attenuated NFƘB-P65 expression and down-regulated cFos proto-oncogene and nuclear factor of activated T cell c1 (NFATc1), the main regulators of osteoclasts. Moreover, the suppression of RANK (the initial receptor triggering several osteoclastogenic transduction pathways) was observed. Thus, this study highlights the potential of MTA as an effective therapeutic compound for restoring bone metabolic disease by inhibiting the RANK-NFATc1 signal pathway.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37294416

RESUMO

Cholangiocarcinoma (CCA), a bile duct cancer with a high mortality rate, has a poor prognosis due to its highly invasive and drug-resistant phenotypes. More effective and selective therapies are urgently needed. Bacteriocins are broad-spectrum antimicrobial peptides/proteins produced by bacterial strains to compete with other bacteria. Recent studies have reported that bacteriocins exhibit anticancer properties against various cancer cell lines with minimal toxicity toward normal cells. In this study, two types of recombinant bacteriocins, rhamnosin from probiotic Lacticaseibacillus rhamnosus and lysostaphin from Staphylococcus simulans, were highly produced in Escherichia coli and subsequently purified via immobilized-Ni2+ affinity chromatography. When their anticancer activity was investigated against CCA cell lines, both rhamnosin and lysostaphin were found capable of inhibiting the growth of CCA cell lines in a dose-dependent fashion but were less toxic toward a normal cholangiocyte cell line. Rhamnosin and lysostaphin as single treatments could suppress the growth of gemcitabine-resistant cell lines to the same extent as or more than they suppressed the parental counterparts. A combination of both bacteriocins more strongly inhibited growth and enhanced cell apoptosis in both parental and gemcitabine-resistant cells partly through the increased expression of the proapoptotic genes BAX, and caspase-3, -8, and -9. In conclusion, this is the first report to demonstrate an anticancer property of rhamnosin and lysostaphin. Using these bacteriocins as single agents or in combination would be effective against drug-resistant CCA.

7.
Biochem Biophys Res Commun ; 407(4): 708-13, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21439264

RESUMO

Bacillus thuringiensis Cry4Ba toxin selectively kills Aedes aegypti mosquito larvae as it is in part due to the presence of specific membrane-bound protein receptors. In this study, using data mining approach, we initially identified three potential glycosylphosphatidylinositol-linked aminopeptidase N (GPI-APN) isoforms, APN2778, APN2783 and APN5808, which are believed to act as Cry4Ba toxin receptors. These three isoforms that are functionally expressed in the larval midgut can be sequence-specific knocked down (ranging from ∼80 % to 95 %) by soaking the Aedes aegypti larvae in buffer of long double-stranded GPI-APN RNAs (∼300-680 bp). Finally, to see the physiological effect of APN knockdowns, the larvae were fed with Escherichia coli expressing Cry4Ba toxin. The results revealed that all the three identified GPI-APN isoforms may possibly function as a Cry4Ba receptor, particularly for APN2783 as those larvae with this transcript knockdown showed a dramatic increase in resistance to Cry4Ba toxicity.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Proteínas de Bactérias/toxicidade , Antígenos CD13/genética , Resistência a Medicamentos/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Aedes/enzimologia , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Técnicas de Silenciamento de Genes , Glicosilfosfatidilinositóis/metabolismo , Isoenzimas/genética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , Interferência de RNA , RNA Mensageiro/antagonistas & inibidores , Análise de Sequência de Proteína , Transcrição Gênica
8.
Front Pediatr ; 8: 572633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102409

RESUMO

Clostridioides (Clostridium) difficile infection is implicated as a major cause of antibiotic-associated diarrhea in hospitals worldwide. Probiotics, especially lactic acid bacteria, are the most frequently used alternative treatment. This study aims to identify potential probiotic enterococci strains that act against C. difficile strains and exert a protective effect on colon adenocarcinoma cells (HT-29 cells). To this end, nine Enterococcus strains isolated from the feces of breast-fed infants were investigated. They were identified as E. faecalis by 16s rRNA sequencing and MALDI-TOF. The probiotic properties including their viabilities in simulated gastrointestinal condition, cell adhesion ability, and their safety were evaluated. All strains exhibited more tolerance toward both pepsin and bile salts and adhered more tightly to HT-29 cells compared with the reference probiotic strain Lactobacillus plantarum ATCC 14917. Polymerase chain reaction (PCR) results exhibited that six of nine strains carried at least one virulence determinant gene; however, none exhibited virulence phenotypes or carried transferable antibiotic resistance genes. These strains did not infect Galleria mellonella when compared to pathogenic E. faecalis strain (p < 0.05). Moreover, their antibacterial activities against C. difficile were examined using agar well-diffusion, spore production, and germination tests. The six safe strains inhibited spore germination (100 - 98.20% ± 2.17%) and sporulation, particularly in C. difficile ATCC 630 treated with E. faecalis PK 1302. Furthermore, immunofluorescence assay showed that the cytopathic effects of C. difficile of HT-29 cells were reduced by the treatment with the cell-free supernatant of E. faecalis strains. These strains prevented rounding of HT-29 cells and preserved the F-actin microstructure and tight junctions between adjacent cells, which indicated their ability to reduce the clostridial cytopathic effects. Thus, the study identified six E. faecalis isolates that have anti-C. difficile activity. These could be promising probiotics with potential applications in the prevention of C. difficile colonization and treatment of C. difficile infection.

9.
Biomolecules ; 10(2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012654

RESUMO

Osteoporosis is a leading world health problem that results from an imbalance between bone formation and bone resorption. ß-glucans has been extensively reported to exhibit a wide range of biological activities, including antiosteoporosis both in vitro and in vivo. However, the molecular mechanisms responsible for ß-glucan-mediated bone formation in osteoblasts have not yet been investigated. The oyster mushroom Pleurotus sajor-caju produces abundant amounts of an insoluble ß-glucan, which is rendered soluble by enzymatic degradation using Hevea glucanase to generate low-molecular-weight glucanoligosaccharide (Ps-GOS). This study aimed to investigate the osteogenic enhancing activity and underlining molecular mechanism of Ps-GOS on osteoblastogenesis of pre-osteoblastic MC3T3-E1 cells. In this study, it was demonstrated for the first time that low concentrations of Ps-GOS could promote cell proliferation and division after 48 h of treatment. In addition, Ps-GOS upregulated the mRNA and protein expression level of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor-2 (Runx2), which are both involved in BMP signaling pathway, accompanied by increased alkaline phosphatase (ALP) activity and mineralization. Ps-GOS also upregulated the expression of osteogenesis related genes including ALP, collagen type 1 (COL1), and osteocalcin (OCN). Moreover, our novel findings suggest that Ps-GOS may exert its effects through the mitogen-activated protein kinase (MAPK) and wingless-type MMTV integration site (Wnt)/ß-catenin signaling pathways.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucanos/química , Lentinula/classificação , Sistema de Sinalização das MAP Quinases , Oligossacarídeos/química , Via de Sinalização Wnt , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA