RESUMO
AIMS: This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS: Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS: Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.
Assuntos
Poluição do Ar , Proteaceae , Árvores , Folhas de Planta/microbiologiaRESUMO
The adaptation and performance of orchid mycorrhizae in heavy metal-polluted soils have been poorly explored. In the present study, proteomic and metabolic approaches were used to detect physiological changes in orchid roots established in a heavy metal-polluted soil and to ascertain whether mycorrhizal fungi affect the metabolic responses of roots. Young Bipinnula fimbriata plantlets were established in control and heavy metal-polluted soils in a greenhouse. After 14 months, exudation of root organic acids, phenolics, percentage of mycorrhization, mineral content, and differential protein accumulation were measured. More root biomass, higher root colonization, and higher exudation rates of citrate, succinate, and malate were detected in roots growing in heavy metal-polluted soils. Higher accumulation of phosphorus and heavy metals was found inside mycorrhizal roots under metal stress. Under non-contaminated conditions, non-mycorrhizal root segments showed enhanced accumulation of proteins related to carbon metabolism and stress, whereas mycorrhizal root segments stimulated protein synthesis related to pathogen control, cytoskeleton modification, and sucrose metabolism. Under heavy metal stress, the proteome profile of non-mycorrhizal root segments indicates a lower induction of defense mechanisms, which, together with the stimulation of enzymes related to carotenoid biosynthesis and cell wall organization, may positively influence mycorrhizal fungi colonization. The results point to different metabolic strategies in mycorrhizal and non-mycorrhizal root segments that are exposed to heavy metal stress. The results indicate that root colonization by mycorrhizal fungi is stimulated to alleviate the negative effects of heavy metals in the orchids.
Assuntos
Metais Pesados/metabolismo , Micorrizas/fisiologia , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Poluentes do Solo/metabolismo , Adaptação Fisiológica , Chile , Orchidaceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteoma , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/fisiologiaRESUMO
Little is known about Orchidaceae plants in Chile and their mycorrhizal associations, a key issue for designing protective actions for endangered species. We investigated root fungi from seven terrestrial orchid species to identify potential mycorrhizal fungi. The main characteristics of Rhizoctonia-like fungi were observed under light microscopy, and isolates were identified through PCR-ITS sequencing. Molecular identification of fungal sequences showed a high diversity of fungi colonizing roots. Fungal ability to germinate seeds of different orchids was determined in symbiotic germination tests; 24 fungal groups were isolated, belonging to the genera Tulasnella, Ceratobasidium, and Thanatephorus. Furthermore, dark septate and other endophytic fungi were identified. The high number of Rhizoctonia-like fungi obtained from adult orchids from the Coastal mountain range suggests that, after germination, these orchids may complement their nutritional demands through mycoheterotrophy. Nonetheless, beneficial associations with other endophytic fungi may also co-exist. In this study, isolated mycorrhizal fungi had the ability to induce seed germination at different efficiencies and with low specificity. Germin ation rates were low, but protocorms continued to develop for 60 days. A Tulasnella sp. isolated from Chloraea gavilu was most effective to induce seed germination of different species. The dark septate endophytic (DSE) fungi did not show any effect on seed development; however, their widespread occurrence in some orchids suggests a putative role in plant establishment.
Assuntos
Micorrizas/classificação , Micorrizas/isolamento & purificação , Orchidaceae/microbiologia , Sementes/crescimento & desenvolvimento , Chile , DNA Fúngico/análise , Espécies em Perigo de Extinção , Germinação , Micorrizas/genética , Orchidaceae/crescimento & desenvolvimento , Filogenia , Raízes de Plantas/microbiologia , Sementes/microbiologia , Análise de Sequência de DNA , SimbioseRESUMO
The present study explores the potential of rhizobacteria isolated from Baccharis linearis and Solidago chilensis in metal(loid)-contaminated soil for producing N-acyl-homoserine lactones (AHLs)-type signal molecules and promoting plant growth. A total of 42 strains were isolated, four demonstrating the production of AHL-type signal molecules. Based on 16S rRNA gene sequencing analyses and MALDI-TOF analyses, these four isolates were identified as belonging to the Pseudomonas genus, specifically P. brassicacearum, P. frederickberguensis, P. koreensis, and P. orientalis. The four AHL-producing strains were evaluated for metal(loid)s tolerance, their plant growth promotion traits, AHL quantification, and their impact on in vitro Lactuca sativa plant growth. The study found that four strains exhibited high tolerance to metal(loid)s, particularly As, Cu, and Zn. Additionally, plant growth-promoting traits were detected in AHL-producing bacteria, such as siderophore production, ammonia production, ACC deaminase activity, and P solubilization. Notably, AHL production varied among strains isolated from B. linearis, where C7-HSL and C9-HSL signal molecules were detected, and S. chilensis, where only C7-HSL signal molecules were observed. In the presence of copper, the production of C7-HSL and C9-HSL significantly decreased in B. linearis isolates, while in S. chilensis isolates, C7-HSL production was inhibited. Further, when these strains were inoculated on lettuce seeds and in vitro plants, a significant increase in germination and plant growth was observed. Mainly, the inoculation of P. brassicacearum and P. frederickberguensis led to extensive root hair development, significantly increasing length and root dry weight. Our results demonstrate that rhizospheric strains produce AHL molecules and stimulate plant growth, primarily through root development. However, the presence of copper reduces the production of these molecules, potentially affecting the root development of non-metalloid tolerant plants such as S. chilensis, which would explain its low population in this hostile environment.
Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção de Quorum/genética , Cobre , RNA Ribossômico 16S/genética , Plantas/genética , SoloRESUMO
Consumers around the world prefer high quality table grapes. To achieve higher quality traits at ripening, grapevine producers apply different plant growth regulators. The synthetic cytokinin forchlorfenuron N-(2-chloro-4-pyridinyl)-N'-phenylurea (CPPU) is widely used, its effect on grape quality is poorly understood. We hypothesized that the use of CPPU in pre-flowering can lead to changes in the metabolism that affects grape quality at harvest. Therefore, we investigated the role of CPPU applications on the quality of grapes by integrating proteomics and metabolomics. CPPU-treated grapevines showed a significant increase in berry size and firmness. Proteomic analyses indicated that CPPU-treated berries accumulated enzymes associated with carbohydrate metabolism, glycolysis, and tricarboxylic acid (TCA) cycle at harvest. Metabolomic analyses showed shifts in the abundance of compounds associated with carbohydrate metabolism and TCA cycle in CPPU-treated grapes. These findings suggest that CPPU applications modulate central carbon metabolism, improving grape berry quality.
Assuntos
Citocininas , Vitis , Vitis/metabolismo , Frutas/metabolismo , Proteômica , MetabolômicaRESUMO
The diversity of orchid mycorrhizal fungi (OMF) and other beneficial root-associated fungi in temperate forests has scarcely been examined. This study aimed to analyze the diversity of mycorrhizal and rhizosphere-associated fungal communities in the terrestrial orchids Gavilea lutea and Chloraea collicensis growing in high-orchid-population-density areas in the piedmont of the Andes Cordillera with native forest (Nothofagus-Araucaria) and Coastal Cordillera with an exotic plantation (Pinus-Eucalyptus) in south-central Chile. We focused on rhizosphere-inhabiting and peloton-associated OMF in a native forest (Andes Cordillera) and a mixed forest (Coastal Cordillera). The native terrestrial orchids G. lutea and C. collicensis were localized, mycorrhizal root segments were taken to isolate peloton-associated OMF, and rhizosphere soil was taken to perform the metabarcoding approach. The results revealed that Basidiomycota and Ascomycota were the main rhizosphere-inhabiting fungal phyla, showing significant differences in the composition of fungal communities in both sites. Sebacina was the most-abundant OMF genera in the rhizosphere of G. lutea growing in the native forest soil. In contrast, Thanatephorus was the most abundant mycorrhizal taxa growing in the rhizosphere of orchids from the Coastal Cordillera. Besides, other OMF genera such as Inocybe, Tomentella, and Mycena were detected. The diversity of OMF in pelotons differed, being mainly related to Ceratobasidium sp. and Tulasnella sp. These results provide evidence of differences in OMF from pelotons and the rhizosphere soil in G. lutea growing in the Andes Cordillera and a selection of microbial communities in the rhizosphere of C. collicensis in the Coastal Cordillera. This raises questions about the efficiency of propagation strategies based only on mycorrhizal fungi obtained by culture-dependent methods, especially in orchids that depend on non-culturable taxa for seed germination and plantlet development.
RESUMO
The firmness of blueberry is one of its most significant quality attributes. Modifications in the composition of the cell wall have been associated with changes in the fruit firmness. In this work, cell wall components and calcium concentration in two blueberry cultivars with contrasting firmness phenotypes were evaluated at harvest and 30 days cold storage (0 °C). High performance anion-exchange chromatography with pulse amperometric detector (HPAEC-PAD) analysis was performed using the "Emerald" (firmer) and "Jewel" (softer) blueberry cultivars, showing increased glucose in the firmer cultivar after cold storage. Moreover, the LM15 antibody, which recognizes xyloglucan domains, displayed an increased signal in the Emerald cultivar after 30 d cold storage. Additionally, the antibody 2F4, recognizing a homogalacturonan calcium-binding domain, showed a greater signal in the firmer Emerald blueberries, which correlates with a higher calcium concentration in the cell wall. These findings suggest that xyloglucan metabolism and a higher concentration of cell wall calcium influenced the firmness of the blueberry fruit. These results open new perspectives regarding the role of cell wall components as xyloglucans and calcium in blueberry firmness.
RESUMO
The rhizosphere microbiome is key in survival, development, and stress tolerance in plants. Salinity, drought, and extreme temperatures are frequent events in the Atacama Desert, considered the driest in the world. However, little information of the rhizosphere microbiome and its possible contribution to the adaptation and tolerance of plants that inhabit the desert is available. We used a high-throughput Illumina MiSeq sequencing approach to explore the composition, diversity, and functions of fungal and bacterial communities of the rhizosphere of Baccharis scandens and Solanum chilense native plants from the Atacama Desert. Our results showed that the fungal phyla Ascomycota and Basidiomycota and the bacterial phyla Actinobacteria and Proteobacteria were the dominant taxa in the rhizosphere of both plants. The linear discriminant analysis (LDA) effect size (LefSe) of the rhizosphere communities associated with B. scandens showed the genera Penicillium and Arthrobacter were the preferential taxa, whereas the genera Oidiodendron and Nitrospirae was the preferential taxa in S. chilense. Both plant showed similar diversity, richness, and abundance according to Shannon index, observed OTUs, and evenness. Our results indicate that there are no significant differences (p = 0.1) between the fungal and bacterial communities of both plants, however through LefSe, we find taxa associated with each plant species and the PCoA shows a separation between the samples of each species. This study provides knowledge to relate the assembly of the microbiome to the adaptability to drought stress in desert plants.
RESUMO
Increase in soil salinity poses an enormous problem for agriculture and highlights the need for sustainable crop production solutions. Plant growth-promoting bacteria can be used to boost the growth of halophytes in saline soils. Salicornia is considered to be a promising salt-accumulating halophyte for capturing large amounts of carbon from the atmosphere. In addition, colonization and chemotaxis could play an important role in Salicornia-microbe interactions. In this study, the role of chemotaxis in the colonization of the halophilic siredophore-producing bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants was investigated. The chemotactic response of FP35T to Salicornia root exudates showed optimum dependence at a salt concentration of 5 % NaCl (w/v). Oleanolic acid, the predominant compound in the exudates detected by HPLC and identified by UPLC-HRMS Q-TOF, acts as a chemoattractant. In vitro experiments demonstrated the enhanced positive effects of wild-type H. anticariensis strain FP35T on root length, shoot length, germination and the vigour index of S. hispanica. Furthermore, these positive effects partially depend on an active chemotaxis system, as the chemotaxis mutant H. anticariensis FP35 ΔcheA showed reduced plant growth promotion for all the parameters tested. Overall, our results suggest that chemotaxis responses to root exudates play an important role in interactions between Salicornia and halophilic bacteria, enhance their colonization and boost plant growth promotion. Preliminary results also indicate that root exudates have a positive impact on H. anticariensis FP35T biofilm formation under saline conditions, an effect which totally depends on the presence of the cheA gene.
RESUMO
Mycorrhizal interactions of orchids are influenced by several environmental conditions. Hence, knowledge of mycorrhizal fungi associated with orchids inhabiting different ecosystems is essential to designing recovery strategies for threatened species. This study analyzes the mycorrhizal associations of terrestrial orchids colonizing grassland and understory in native ecosystems of the region of La Araucanía in southern Chile. Mycorrhizal fungi were isolated from peloton-containing roots and identified based on the sequence of the ITS region. Their capacities for seed germination were also investigated. We detected Tulasnella spp. and Ceratobasidium spp. in the pelotons of the analyzed orchids. Additionally, we showed that some Ceratobasidium isolates effectively induce seed germination to differing degrees, unlike Tulasnella spp., which, in most cases, fail to achieve protocorm growth. This process may underline a critical step in the life cycle of Tulasnella-associated orchids, whereas the Ceratobasidium-associated orchids were less specific for fungi and were effectively germinated with mycorrhizal fungi isolated from adult roots.
RESUMO
The microbiological interactions of the roots of non-photosynthetic plants in South America have been scarcely explored. This study analyzes culturable fungal diversity associated with the mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae) in southern Chile, growing in two different understoreys of native (Nothofagus-dominated) and mixed forest (native, Cupressus sempervirens, and Pinus radiata). Rhizospheric and endophytic fungi were isolated, cultured, and purified to identify microorganisms associated with A. uniflora roots. We showed the different fungi associated with the plant, and that these distributions are influenced by the sampling site. We isolated 410 fungal strains (144 endophytic and 266 from the rhizosphere). We identified 13 operative taxonomical units from plants sampled in the mixed forest, while 15 were from the native forest. Rhizospheric microorganisms were mainly related to Penicillium spp., whereas some pathogenic and saprophytic strains were more frequent inside the roots. Our results have also shown that the fungal strains are weak for phosphate solubilization, but other pathways such as organic acid exudation and indole acetic acid production can be considered as major mechanisms to stimulate plant growth. Our results point to new fungal associates of A. uniflora plants reported in Andean ecosystems, identifying new beneficial endophytic fungi associated with roots of this fully mycoheterotrophic plant.
RESUMO
The endophytic strain Chaetomium cupreum isolated from metal-contaminated soil was inoculated in Eucalyptus globulus roots to identify genes involved in metal stress response and plant growth promotion. We analyzed the transcriptome of E. globulus roots inoculated with C. cupreum. De novo sequencing, assembly, and analysis were performed to identify molecular mechanisms involved in metal stress tolerance and plant growth promotion. A total of 393,371,743 paired-end reads were assembled into 135,155 putative transcripts. It was found that 663 genes significantly changed their expression in the presence of treatment, of which 369 were up-regulated and 294 were down-regulated. We found differentially expressed genes (DEGs) encoding metal transporters, transcription factors, stress and defense response proteins, as well as DEGs involved in auxin biosynthesis and metabolism. Our results showed that the inoculation of C. cupreum enhanced tolerance to metals and growth promotion on E. globulus. This study provides new information to understand molecular mechanisms involved in plant-microbe interactions under metals stress.
RESUMO
In soils multi-contaminated with heavy metal and metalloids, the establishment of plant species is often hampered due to toxicity. This may be overcome through the inoculation of beneficial soil microorganisms. In this study, two arsenic-resistant bacterial isolates, classified as Pseudomonas gessardii and Brevundimonas intermedia, and two arsenic-resistant fungi, classified as Fimetariella rabenhortii and Hormonema viticola, were isolated from contaminated soil from the Puchuncaví valley (Chile). Their ability to produce indoleacetic acid and siderophores and mediate phosphate solubilization as plant growth-promoting properties were evaluated, as well as levels of arsenic resistance. A real time PCR applied to Triticum aestivum that grew in soil inoculated with the bacterial and fungal isolates was performed to observe differences in the relative expression of heavy metal stress defense genes. The minimum inhibitory concentration of the bacterial strains to arsenate was up to 7000 mg·L-1 and that of the fungal strains was up to 2500 mg·L-1. P. gessardi was able to produce siderophores and solubilize phosphate; meanwhile, B. intermedia and both fungi produced indoleacetic acid. Plant dry biomass was increased and the relative expression of plant metallothionein, superoxide dismutase, ascorbate peroxidase and phytochelatin synthase genes were overexpressed when P. gessardii plus B. intermedia were inoculated.
RESUMO
Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme.
Assuntos
Annona/genética , Catecol Oxidase/genética , Expressão Gênica , Proteínas de Plantas/genética , Annona/metabolismo , Catecol Oxidase/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Microscopia Confocal , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.
Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transcriptoma , Vitis/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas/genética , Fenótipo , Proteínas de Plantas/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Vitis/crescimento & desenvolvimento , Vitis/metabolismoRESUMO
The gene expression stability of candidate reference genes in the roots and leaves of Solanum lycopersicum inoculated with arbuscular mycorrhizal fungi was investigated. Eight candidate reference genes including elongation factor 1 α (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), protein phosphatase 2A (PP2Acs), ribosomal protein L2 (RPL2), ß-tubulin (TUB), ubiquitin (UBI) and actin (ACT) were selected, and their expression stability was assessed to determine the most stable internal reference for quantitative PCR normalization in S. lycopersicum inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. The stability of each gene was analysed in leaves and roots together and separated using the geNorm and NormFinder algorithms. Differences were detected between leaves and roots, varying among the best-ranked genes depending on the algorithm used and the tissue analysed. PGK, TUB and EF1 genes showed higher stability in roots, while EF1 and UBI had higher stability in leaves. Statistical algorithms indicated that the GAPDH gene was the least stable under the experimental conditions assayed. Then, we analysed the expression levels of the LePT4 gene, a phosphate transporter whose expression is induced by fungal colonization in host plant roots. No differences were observed when the most stable genes were used as reference genes. However, when GAPDH was used as the reference gene, we observed an overestimation of LePT4 expression. In summary, our results revealed that candidate reference genes present variable stability in S. lycopersicum arbuscular mycorrhizal symbiosis depending on the algorithm and tissue analysed. Thus, reference gene selection is an important issue for obtaining reliable results in gene expression quantification.
Assuntos
Fungos não Classificados/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Micorrizas/metabolismo , Proteínas de Plantas/biossíntese , Solanum lycopersicum/metabolismo , Simbiose/fisiologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components.
Assuntos
Produtos Agrícolas/química , Solo/química , Gerenciamento de Resíduos , Agricultura , Metais/química , Compostos Orgânicos/química , Eliminação de ResíduosRESUMO
The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chlorophyll and N, P and K content of Eucalyptus globulus Labill. growing in soil contaminated by heavy metals in the presence or absence of Glycine max were investigated. Glomus mosseae and Glomus deserticola increased dry weight, shoot length, total N, P and K concentration and the quantity of chlorophyll in E. globulus shoots. The protection of Eucalyptus by AM fungi against the action of the heavy metals was more evident when this plant grew as an intercrop with soybean than as a monoculture. The presence of the saprobe fungi Fusarium concolor and Trichoderma koningii further enhanced shoot dry weight, N, P and K content of AM Eucalyptus. The co-inoculation of Eucalyptus with Glomus deserticola and T. koningii was more effective for Cd uptake. In addition, Glomus deserticola enhanced the amount of Pb absorbed by Eucalyptus plants. We showed that it is important to select the most efficient AM and saprobe fungi to stimulate plant growth in heavy-metal-contaminated soil and that the combination of both plays an important role in metal tolerance of Eucalyptus plants.