Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Phylogenet Evol ; 103: 245-259, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27400629

RESUMO

Classification and evolutionary studies of particularly speciose clades pose important challenges, as phylogenetic analyses typically sample a small proportion of the existing diversity. We examine here one of the largest bee genera, the genus Megachile - the dauber and leafcutting bees. Besides presenting a phylogeny based on five nuclear genes (5480 aligned nucleotide positions), we attempt to use the phylogenetic signal of mitochondrial DNA barcodes, which are rapidly accumulating and already include a substantial proportion of the known species diversity in the genus. We used barcodes in two ways: first, to identify particularly divergent lineages and thus to guide taxon sampling in our nuclear phylogeny; second, to augment taxon sampling by combining nuclear markers (as backbone for ancient divergences) with DNA barcodes. Our results indicate that DNA barcodes bear phylogenetic signal limited to very recent divergences (3-4 my before present). Sampling within clades of very closely related species may be augmented using this technique, but our results also suggest statistically supported, but incongruent placements of some taxa. However, the addition of one single nuclear gene (LW-rhodopsin) to the DNA barcode data was enough to recover meaningful placement with high clade support values for nodes up to 15 million years old. We discuss different proposals for the generic classification of the tribe Megachilini. Finding a classification that is both in agreement with our phylogenetic hypotheses and practical in terms of diagnosability is particularly challenging as our analyses recover several well-supported clades that include morphologically heterogeneous lineages. We favour a classification that recognizes seven morphologically well-delimited genera in Megachilini: Coelioxys, Gronoceras, Heriadopsis, Matangapis, Megachile, Noteriades and Radoszkowskiana. Our results also lead to the following classification changes: the groups known as Dinavis, Neglectella, Eurymella and Phaenosarus are reestablished as valid subgenera of the genus Megachile, while the subgenus Alocanthedon is placed in synonymy with M. (Callomegachile), the subgenera Parachalicodoma and Largella with M. (Pseudomegachile), Anodonteutricharaea with M. (Paracella), Platysta with M. (Eurymella), and Grosapis and Eumegachile with M. (Megachile) (new synonymies). In addition, we use maximum likelihood reconstructions of ancestral geographic ranges to infer the origin of the tribe and reconstruct the main dispersal routes explaining the current, cosmopolitan distribution of this genus.


Assuntos
Abelhas/classificação , Animais , Abelhas/genética , Evolução Biológica , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Código de Barras de DNA Taxonômico , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Funções Verossimilhança , Filogenia , Filogeografia , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
2.
Proc Biol Sci ; 280(1756): 20122833, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23390107

RESUMO

The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.


Assuntos
Variação Genética , Olea/fisiologia , Agricultura , Teorema de Bayes , Chipre , Haplótipos , Região do Mediterrâneo , Oriente Médio , Olea/genética , Filogeografia , Plastídeos/genética
3.
Mol Ecol ; 22(4): 1092-104, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23189975

RESUMO

Genetic diversity of contemporary domesticated species is shaped by both natural and human-driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model-based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human-mediated dispersal of almond tree out of its centre of origin. Still, the detection of region-specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.


Assuntos
Evolução Molecular , Variação Genética , Prunus/genética , Teorema de Bayes , Análise por Conglomerados , DNA de Cloroplastos/genética , DNA de Plantas/genética , Haplótipos , Região do Mediterrâneo , Repetições de Microssatélites , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
4.
J Evol Biol ; 26(1): 223-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23205963

RESUMO

Introgression of sequences from crop species in wild relatives is of fundamental and practical concern. Here, we address gene flow between cultivated wheat and its widespread polyploid relative, Aegilops triuncialis, using 12 EST-SSR markers mapped on wheat chromosomes. The presence of wheat diagnostic alleles in natural populations of the barbed goatgrass growing in proximity to cultivated fields highlights that substantial gene flow occurred when both species coexisted. Furthermore, loci from the A subgenome of wheat were significantly less introgressed than sequences from other subgenomes, indicating differential introgression into Ae. triuncialis. Gene flow between such species sharing nonhomeologous chromosomes addresses the evolutionary outcomes of hybridization and may be important for efficient gene containment.


Assuntos
Fluxo Gênico , Genoma de Planta , Poaceae/genética , Triticum/genética , California , Etiquetas de Sequências Expressas , Espanha
5.
Mol Ecol ; 18(17): 3730-44, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19674303

RESUMO

The alpine white-flowered buttercup, Ranunculus kuepferi Greuter & Burdet, is a polyploid complex with diploids endemic to the southwestern Alps and polyploids - which have been previously described as apomictic - widespread throughout European mountains. Due to the polymorphic status of both its ploidy level and its reproductive mode, R. kuepferi represents a key species for understanding the evolution of polyploid lineages in alpine habitats. To disentangle the phylogeography of this polyploid taxon, we used cpDNA sequences and AFLP (amplified fragment length polymorphism) markers in 33 populations of R. kuepferi representative of its ploidy level and distribution area. Polyploid individuals were shown to be the result of at least two polyploidization events that may have taken place in the southwestern Alps. From this region, one single main migration of tetraploids colonized the entire Alpine range, the Apennines and Corsica. Genetic recombination among tetraploids was also observed, revealing the facultative nature of the apomictic reproductive mode in R. kuepferi polyploids. Our study shows the contrasting role played by diploid lineages mostly restricted to persistent refugia and by tetraploids, whose dispersal abilities have permitted their range extension all over the previously glaciated Alpine area and throughout neighbouring mountain massifs.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Filogenia , Ranunculus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , DNA de Cloroplastos/genética , DNA de Plantas/genética , Europa (Continente) , Geografia , Dados de Sequência Molecular , Poliploidia , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Mol Ecol Resour ; 15(1): 28-41, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916682

RESUMO

Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.


Assuntos
Erros de Diagnóstico , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Berberis/classificação , Berberis/genética , Variação Genética , Genótipo , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA