RESUMO
It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.
Assuntos
Cefalosporinas/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antibacterianos/farmacologia , Western Blotting , Cefotaxima/farmacologia , Sobrevivência Celular/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacosRESUMO
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.