Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 346(2): 284-95, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20692248

RESUMO

The optic lobe forms a prominent compartment of the Drosophila adult brain that processes visual input from the compound eye. Neurons of the optic lobe are produced during the larval period from two neuroepithelial layers called the outer and inner optic anlage (OOA, IOA). In the early larva, the optic anlagen grow as epithelia by symmetric cell division. Subsequently, neuroepithelial cells (NE) convert into neuroblasts (NB) in a tightly regulated spatio-temporal progression that starts at the edges of the epithelia and gradually move towards its centers. Neuroblasts divide at a much faster pace in an asymmetric mode, producing lineages of neurons that populate the different parts of the optic lobe. In this paper we have reconstructed the complex morphogenesis of the optic lobe during the larval period, and established a role for the Notch and Jak/Stat signaling pathways during the NE-NB conversion. After an early phase of complete overlap in the OOA, signaling activities sort out such that Jak/Stat is active in the lateral OOA which gives rise to the lamina, and Notch remains in the medial cells that form the medulla. During the third instar, a wave front of enhanced Notch activity progressing over the OOA from medial to lateral controls the gradual NE-NB conversion. Neuroepithelial cells at the medial edge of the OOA, shortly prior to becoming neuroblasts, express high levels of Delta, which activates the Notch pathway and thereby maintains the OOA in an epithelial state. Loss of Notch signaling, as well as Jak/Stat signaling, results in a premature NE-NB conversion of the OOA, which in turn has severe effects on optic lobe patterning. Our findings present the Drosophila optic lobe as a useful model to analyze the key signaling mechanisms controlling transitions of progenitor cells from symmetric (growth) to asymmetric (differentiative) divisions.


Assuntos
Diferenciação Celular , Drosophila/metabolismo , Janus Quinases/metabolismo , Células Neuroepiteliais/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Receptores Notch/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Embrião não Mamífero/metabolismo , Microscopia Confocal , Células Neuroepiteliais/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo
2.
G3 (Bethesda) ; 9(11): 3791-3800, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690598

RESUMO

A variety of genetic techniques have been devised to determine cell lineage relationships during tissue development. Some of these systems monitor cell lineages spatially and/or temporally without regard to gene expression by the cells, whereas others correlate gene expression with the lineage under study. The GAL4 Technique for Real-time and Clonal Expression (G-TRACE) system allows for rapid, fluorescent protein-based visualization of both current and past GAL4 expression patterns and is therefore amenable to genome-wide expression-based lineage screens. Here we describe the results from such a screen, performed by undergraduate students of the University of California, Los Angeles (UCLA) Undergraduate Research Consortium for Functional Genomics (URCFG) and high school summer scholars as part of a discovery-based education program. The results of the screen, which reveal novel expression-based lineage patterns within the brain, the imaginal disc epithelia, and the hematopoietic lymph gland, have been compiled into the G-TRACE Expression Database (GED), an online resource for use by the Drosophila research community. The impact of this discovery-based research experience on student learning gains was assessed independently and shown to be greater than that of similar programs conducted elsewhere. Furthermore, students participating in the URCFG showed considerably higher STEM retention rates than UCLA STEM students that did not participate in the URCFG, as well as STEM students nationwide.


Assuntos
Linhagem da Célula , Drosophila/genética , Animais , Encéfalo , Olho , Expressão Gênica , Sistema Linfático , Pesquisa , Estudantes , Universidades , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA