RESUMO
Although atovaquone is effective in treating and preventing Pneumocystis pneumonia (PCP), its use is limited by nonlinear absorption and adverse events. The current study was undertaken to examine the activity of encochleated atovaquone (eATQ), a novel lipid-crystal nanoparticle formulation, in a mouse model of PCP. eATQ 100-200 mg was superior to commercially available atovaquone at 14 days in decreasing total Pneumocystis nuclei and asci. eATQ plus anidulafungin reduced nuclei significantly better than commercial atovaquone plus anidulafungin. eATQ is a novel formulation of atovaquone that warrants further evaluation for treatment and prevention of PCP.
Assuntos
Antifúngicos , Atovaquona , Pneumonia por Pneumocystis , Anidulafungina/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Atovaquona/uso terapêutico , Modelos Animais de Doenças , Camundongos , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/prevenção & controleRESUMO
Antifungal prophylaxis is recommended to prevent invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii in patients at risk for opportunistic infections, such as allogeneic blood or marrow transplant recipients, patients with hematological disease undergoing chemotherapy, or patients on immunosuppressive therapies. Current approaches to antifungal prophylaxis require multiple agents to cover these key fungi. Rezafungin, a novel echinocandin designed for next-generation properties (e.g., greater stability and long-acting pharmacokinetics for once-weekly dosing), has demonstrated in vitro activity against Candida and Aspergillus spp. and efficacy against Pneumocystis spp. biofilms. Rezafungin was evaluated in in vivo studies of prophylactic efficacy using immunosuppressed mouse models of invasive candidiasis, aspergillosis, and Pneumocystis pneumonia. Rezafungin reduction of Candida CFU burden was generally greater with increasing drug concentrations (5, 10, or 20 mg/kg) and when rezafungin was administered closer to the time of fungal challenge (day -1, -3, or -5). Similarly, in the aspergillosis model, survival rates increased with drug concentrations and when rezafungin was administered closer to the time of fungal challenge. Against Pneumocystismurina, rezafungin significantly reduced trophic nuclei and asci counts at all doses tested. Rezafungin prevented infection at the two higher doses compared to vehicle and had comparable activity to the active control trimethoprim-sulfamethoxazole at human equivalent doses for prevention. These findings support phase 3 development of rezafungin and the potential for single-agent prophylaxis against invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii.
Assuntos
Aspergilose , Candidíase Invasiva , Pneumonia por Pneumocystis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/prevenção & controle , Equinocandinas , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/prevenção & controleRESUMO
The echinocandins are a class of antifungal agents that target ß-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina ß-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Assuntos
Anidulafungina/farmacologia , Antifúngicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Pneumocystis/efeitos dos fármacos , Pneumocystis/genética , Animais , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/prevenção & controleRESUMO
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Assuntos
Antifúngicos/farmacologia , Hidrazonas/farmacologia , Esfingolipídeos/biossíntese , Animais , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Criptococose/metabolismo , Criptococose/microbiologia , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade MicrobianaRESUMO
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism, and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show that extracellular vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii- and P. murina-infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating that Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels but did not affect macrophages' ability to kill or phagocytose P. carinii. These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis-infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.IMPORTANCEPneumocystis spp. are fungal pathogens that can cause severe pneumonia in mammals, relying heavily on the host for essential nutrients. The absence of an in vitro culture system poses challenges in understanding their metabolism, and the acquisition of vital nutrients from host lungs remains unexplored. Extracellular vesicles (EVs) are found near Pneumocystis spp., and it is hypothesized that these vesicles transport nutrients to the pathogenic fungi. Pneumocystis proteins within the EVs showed homology to other fungal EV proteomes, suggesting that Pneumocystis spp. release EVs. While EVs did not significantly enhance P. carinii growth in vitro, P. carinii displayed active uptake of these vesicles. Moreover, EVs induced proinflammatory cytokine production in macrophages without compromising their ability to combat P. carinii. These findings provide valuable insights into EV dynamics during host-pathogen interactions in Pneumocystis pneumonia. However, the precise underlying mechanisms remain uncertain. This research also raises the potential for engineered EVs in therapeutic applications.
Assuntos
Vesículas Extracelulares , Pneumocystis carinii , Pneumocystis , Pneumonia por Pneumocystis , Ratos , Animais , Proteoma/metabolismo , Pneumocystis/metabolismo , Macrófagos/metabolismo , Mamíferos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismoRESUMO
Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30-60%mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed Neutrophil Extracellular Trap (NET) presence in the lungs of the P. murina -infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina . While isolated NETs did not compromise P. murina viability, our data highlight the potential role of neutrophils in promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.
RESUMO
Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30%-60% mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed neutrophil extracellular trap (NET) presence in the lungs of the P. murina-infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina. Isolated NETs compromised P. murina viability in vitro, highlighting the potential role of neutrophils in controlling fungal growth and promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.IMPORTANCEPneumocystis jirovecii pneumonia (PjP) affects individuals with weakened immunity, such as HIV/AIDS, cancer, and organ transplant patients. Severe PjP triggers lung inflammation, impairing function and potentially causing acute respiratory distress syndrome. Non-HIV individuals face a 30%-60% mortality rate, underscoring the need for deeper insight into PjP's inflammatory responses. Past research focused on macrophages in managing Pneumocystis infection and its inflammation, while the role of neutrophils was generally overlooked. In contrast, our findings in P. murina-infected mouse lungs showed neutrophil involvement during inflammation and increased expression of NLRP3 inflammasome and NETosis pathways. Detection of neutrophil extracellular traps further indicated their involvement in the inflammatory process. Although beneficial in combating infection, unregulated neutrophil activation poses a potential threat to lung tissues. Understanding the behavior of neutrophils in Pneumocystis infections is crucial for controlling detrimental reactions and formulating treatments to reduce lung damage, ultimately improving the survival rates of individuals with PjP.
Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Animais , Armadilhas Extracelulares/imunologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Camundongos , Neutrófilos/imunologia , Pneumocystis/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , FemininoRESUMO
Introduction: Pneumocystis species are pathogenic fungi known to cause pneumonia in immunocompromised mammals. They are obligate to their host, replicate extracellularly in lung alveoli and thrive in the copper-enriched environment of mammalian lungs. In this study, we investigated the proteome of Pneumocystis murina, a model organism that infects mice, in the context of its copper sensing and tolerance. Methods and results: The query for copper-associated annotations in FungiDB followed by a manual curation identified only 21 genes in P. murina, significantly fewer compared to other clinically relevant fungal pathogens or phylogenetically similar free-living fungi. We then employed instrumental analyses, including Size-Exclusion Chromatography Inductively Coupled Plasma Mass Spectrometry (SEC-ICP-MS), Immobilized Metal Affinity Chromatography (IMAC), and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), to isolate and identify copper-binding proteins from freshly extracted organisms, revealing 29 distinct cuproproteins. The RNA sequencing (RNA-seq) analysis of P. murina exposed to various CuSO4 concentrations at three temporal intervals (0.5, 2, and 5 h) indicated that significant gene expression changes occurred only under the highest CuSO4 concentration probed (100 µM) and the longest exposure duration (5 h). This stimulus led to the upregulation of 43 genes and downregulation of 27 genes compared to untreated controls. Quantitative PCR (qPCR) confirmed the expression of four out of eight selected upregulated genes, including three assumed transcription factors (PNEG_01236, PNEG_01675, and PNEG_01730) and a putative copper transporter (PNEG_02609). Notably, the three applied methodologies - homology-based annotation, SEC-ICP-MS/IMAC/LC-MS/MS, and RNA-seq - yielded largely distinct findings, with only four genes (PNEG_02587, PNEG_03319, PNEG_02584, and PNEG_02989) identified by both instrumental methods. Discussion: The insights contribute to the broader knowledge of Pneumocystis copper homeostasis and provide novel facets of host-pathogen interactions for extracellular pathogens. We suggest that future studies of Pneumocystis pathogenicity and copper stress survival should consider the entire spectrum of identified genes.
RESUMO
Pneumocystis spp. are yeast-like fungi that cause pneumocystis pneumonia (PcP) in immunocompromised individuals and exacerbate chronic lung diseases in immunocompetent individuals. The Pneumocystis life cycle includes trophic forms and asci (cyst forms). The cell walls of Pneumocystis asci contain ß-1,3-D-glucan, and treatment of PcP with ß-1,3-D-glucan synthase inhibitors, such as anidulafungin, results in depletion of asci, but not trophic forms. The pulmonary host response during immune reconstitution (IR)-mediated clearance of PcP in anidulafungin-treated and untreated mice was characterized to identify ascus-specific responses. During IR, similar numbers of trophic forms were present in the anidulafungin-treated and untreated mice; however, asci were only present in the untreated mice. IR resulted in a significant reduction of trophic forms from the lungs in both groups and asci in the untreated group. The presence of asci in untreated mice correlated with increased ß-glucan content in the lungs. The untreated mice mounted immune responses associated with a deleterious host inflammatory response, including increased CD8(+) T cell influx and expression of macrophage inflammatory response markers. A more robust cellular response was also observed in the untreated mice, with increased numbers of macrophages and neutrophils that were associated with greater lung damage. Markers of a Th17 response were also elevated in the untreated mice. These results suggest that the host mounts unique responses to asci and trophic forms. That these 2 life cycle stages provoked distinct host response profiles has significant implications for clearance and interpretation of the host immune responses to PcP.
Assuntos
Pneumocystis/classificação , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Albuminas/metabolismo , Anidulafungina , Animais , Antifúngicos/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Parede Celular/química , Parede Celular/metabolismo , Equinocandinas/uso terapêutico , Feminino , Citometria de Fluxo , Inflamação/metabolismo , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C3H , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/patologiaRESUMO
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show Extracellular Vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii and P. murina infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and indicate a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro , did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels, but did not affect macrophages' ability to kill or phagocytose P. carinii . These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii 's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis -infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.
RESUMO
Many preclinical studies of infectious diseases have neglected experimental designs that evaluate potential differences related to sex with a concomitant over-reliance on male model systems. Hence, the NIH implemented a monitoring system for sex inclusion in preclinical studies. METHODS: Per this mandate, we examined the lung burdens of Pneumocystis murina infection in three mouse strains in both male and female animals at early, mid, and late time points. RESULTS: Females in each strain had higher infection burdens compared to males at the later time points. CONCLUSION: Females should be included in experimental models studying Pneumocystis spp.
RESUMO
The proposed life cycle of fungi in the genus Pneumocystis has typically included both an asexual cycle via binary fission and a sexual cycle. Until recently, the strategy used for sexual replication was largely unknown, but genomic and functional assays now support a mode known as primary homothallism (self-fertilization). The question of whether an asexual cycle contributes to the growth of these fungi remains. Treatment of Pneumocystis pneumonia in immunosuppressed rodent models with the class of drugs known as echinocandins is challenging the historical concept of asexual replication. The echinocandins target 1,3-ß-D-glucan (BG) synthesis resulting in death for most fungi. Because Pneumocystis species have both non-BG expressing life cycle stages (trophic forms) and BG-expressing asci, treatment with anidulafungin and caspofungin resulted in elimination of asci, with large numbers of non-BG expressing organisms remaining in the lungs. Transcriptional analyses of anidulafungin treated Pneumocystis murina-infected lungs indicated that these agents were blocking the sexual cycle. In the present study, we explored whether there was an asexual or alternative method of replication that could rescue P. murina survival and growth in the context of anidulafungin treatment. The effects of anidulafungin treatment on early events in the sexual cycle were investigated by RT-qPCR targeting specific mating genes, including mam2, map3, matMi, matPi, and matMc. Results from the in vivo and gene expression studies clearly indicated there was no rescue by an asexual cycle, supporting these fungi's reliance on the sexual cycle for survival and growth. Dysregulation of mating-associated genes showed that anidulafungin induced effects early in the mating process. IMPORTANCE The concept of a sexually obligate fungus is unique among human fungal pathogens. This reliance can be exploited for drug development and here we show a proof of principle for this unusual target. Most human fungal pathogens eschew the mammalian environment with its battery of immune responses. Pneumocystis appear to have evolved to survive in such an environment, perhaps by using sexual replication to help in DNA repair and to introduce genetic variation in its major surface antigen family because the lung is the primary environment of these pathogens. The concept of primary homothallism fits well into its chosen ecosystem, with ready mating partners expressing both mating type receptors, and a sexual cycle that can introduce beneficial genetic variation without the need for outbreeding.
Assuntos
Pneumocystis , Pneumonia por Pneumocystis , Animais , Anidulafungina/uso terapêutico , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Ecossistema , Pneumocystis/genética , Pneumonia por Pneumocystis/tratamento farmacológicoRESUMO
Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus, alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic properties that allow for once-weekly dosing in addition, to antifungal activity against these predominant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. murina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg 3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for 2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for 4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin 20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both prevent infection and eliminate P. murina from the lungs of mice. These findings support the obligate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further investigation for treatment of P. jirovecii pneumonia in humans.
RESUMO
Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.
RESUMO
Apicomplexan parasites of the genus Babesia cause babesiosis in humans and animals. The microscopic examination of stained blood smears, detection of serum antibodies by immunoassays, and PCR-based identification of parasite nucleic acid in blood are common laboratory methods for diagnosing babesiosis. The present study evaluated a commercially available Babesia genus-specific fluorescence in situ hybridization (FISH) test for detecting Babesia parasites in blood smears. The FISH test detected Babesia duncani and Babesia microti, two common species that cause human infections in the USA, and other Babesia species of human and veterinary importance in less than two hours. The Babesia genus-specific FISH test supplements other existing laboratory methods for diagnosing babesiosis and may be particularly useful in resource-limited laboratories.
RESUMO
Apicomplexan parasites of the genus Babesia cause babesiosis in humans and animals worldwide. Human babesiosis is a predominantly zoonotic disease transmitted by hard ticks that is of increasing health concern in the USA and many other countries. Microscopic examination of stained blood smears, detection of serum antibodies by immunoassays and identification of parasite nucleic acid in blood by qPCR and fluorescence in situ hybridization (FISH) are some methods available for diagnosing babesiosis. This study investigated the use of a Babesia genus-specific FISH test for detecting Babesia parasites in blood smears and immunofluorescence assay (IFA) for detecting serum antibodies to Babesia duncani and Babesia microti, two common species that cause human babesiosis in the USA. The findings with clinical samples originating from USA, Australia, Europe and elsewhere demonstrate that the parallel use of Babesia genus-specific FISH and IFA tests for B. duncani and B. microti provides more useful diagnostic information in babesiosis and that B. duncani infections are more widespread globally than presently recognized.
RESUMO
BACKGROUND: Pneumocystis spp. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. Pneumocystis colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to Pneumocystis. METHODS: To analyze the role of SP-A in protecting the immunocompetent host from Pneumocystis colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to P. murina colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Detection of P. murina specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to P. murina within the animal facility. However, P. murina mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8-10 weeks and declined to undetectable levels by 16-18 weeks. When the mice were immunosuppressed, P. murina cyst forms were also only detected in KO mice. P. murina mRNA was detected in SCID mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared. CONCLUSION: These data support an important role for SP-A in protecting the immunocompetent host from P. murina colonization, and provide a model to study Pneumocystis colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to P. murina even when housed under barrier conditions.
Assuntos
Exposição Ambiental , Imunidade Inata , Imunocompetência , Pulmão/imunologia , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/prevenção & controle , Proteína A Associada a Surfactante Pulmonar/metabolismo , Corticosteroides/farmacologia , Animais , Anticorpos Antifúngicos/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Imunocompetência/efeitos dos fármacos , Imunocompetência/genética , Imunossupressores/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Camundongos SCID , Pneumocystis/genética , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/transmissão , Proteína A Associada a Surfactante Pulmonar/deficiência , Proteína A Associada a Surfactante Pulmonar/genética , RNA Fúngico/sangue , RNA Mensageiro/sangue , Fatores de TempoRESUMO
We examined the effects of surfactant protein A (SP-A), a collectin, on the interaction of Pneumocystis murina with its host at the beginning, early to middle, and late stages of infection. Pneumocystis murina from SP-A wild-type (WT) mice inoculated intractracheally into WT mice (WT(S)-WT(R)) adhered well to alveolar macrophages, whereas organisms from SP-A knockout (KO) mice inoculated into KO mice (KO(S)-KO(R)) did not. Substitution of WT mice as the source of organisms (WT(S)-KO(R)) or recipient host macrophages (KO(S)-WT(R)) restored adherence to that found with WT(S)-WT(R) mice. In contrast, when immunosuppressed KO and WT mice were inoculated with P. murina from a homologous source (KO(S)-KO(R), WT(S)-WT(R)) or heterologous source (WT(S)-KO(R), KO(S)-WT(R)) and followed sequentially, WT(S)-KO(R) mice had the highest levels of infection at weeks 3 and 4; these mice also had the highest levels of the chemokine macrophage inflammatory protein-2 and neutrophils in lavage fluid at week 3. Surfactant protein-A administered to immunosuppressed KO(S)-KO(R) mice with Pneumocystis pneumonia for 8 wk as a therapeutic agent failed to lower the organism burden. We conclude that SP-A can correct the host immune defect in the beginning of P. murina infection, but not in the middle or late stages of the infection.
Assuntos
Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Adesão Celular , Quimiocina CXCL2/análise , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Proteína A Associada a Surfactante Pulmonar/deficiênciaRESUMO
It was highlighted that the original article [1] contained errors in the figures and their legends and by extension the in-text figure citations. This Corrections article shows the correct figures and correct figure legends.
RESUMO
BACKGROUND: The yeast-like fungi Pneumocystis, resides in lung alveoli and can cause a lethal infection known as Pneumocystis pneumonia (PCP) in hosts with impaired immune systems. Current therapies for PCP, such as trimethoprim-sulfamethoxazole (TMP-SMX), suffer from significant treatment failures and a multitude of serious side effects. Novel therapeutic approaches (i.e. newly developed drugs or novel combinations of available drugs) are needed to treat this potentially lethal opportunistic infection. Quantitative Systems Pharmacological (QSP) models promise to aid in the development of novel therapies by integrating available pharmacokinetic (PK) and pharmacodynamic (PD) knowledge to predict the effects of new treatment regimens. RESULTS: In this work, we constructed and independently validated PK modules of a number of drugs with available pharmacokinetic data. Characterized by simple structures and well constrained parameters, these PK modules could serve as a convenient tool to summarize and predict pharmacokinetic profiles. With the currently accepted hypotheses on the life stages of Pneumocystis, we also constructed a PD module to describe the proliferation, transformation, and death of Pneumocystis. By integrating the PK module and the PD module, the QSP model was constrained with observed levels of asci and trophic forms following treatments with multiple drugs. Furthermore, the temporal dynamics of the QSP model were validated with corresponding data. CONCLUSIONS: We developed and validated a QSP model that integrates available data and promises to facilitate the design of future therapies against PCP.