Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.708
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340042

RESUMO

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Drosophila , Feminino , Células HCT116 , Células HEK293 , Resposta ao Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116499

RESUMO

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Assuntos
Dermatite , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Inflamação , Peptidoglicano/metabolismo , Células Epiteliais/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Imunidade Inata , Mamíferos
3.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
4.
Cell ; 162(5): 1003-15, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26279188

RESUMO

The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.


Assuntos
Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Humanos , Fosforilação , Interferência de RNA , Fatores de Transcrição , Ubiquitinação
5.
Mol Cell ; 82(5): 986-1002.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182480

RESUMO

Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Genoma/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Cell ; 158(6): 1389-1401, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215494

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected catalytic activity of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic dinucleotide.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Listeria monocytogenes/metabolismo , Piruvato Carboxilase/química , Piruvato Carboxilase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bacteriólise , Sítios de Ligação , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Listeria monocytogenes/enzimologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular
7.
Annu Rev Cell Dev Biol ; 30: 581-613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150012

RESUMO

Embryogenesis depends on a highly coordinated cascade of genetically encoded events. In animals, maternal factors contributed by the egg cytoplasm initially control development, whereas the zygotic nuclear genome is quiescent. Subsequently, the genome is activated, embryonic gene products are mobilized, and maternal factors are cleared. This transfer of developmental control is called the maternal-to-zygotic transition (MZT). In this review, we discuss recent advances toward understanding the scope, timing, and mechanisms that underlie zygotic genome activation at the MZT in animals. We describe high-throughput techniques to measure the embryonic transcriptome and explore how regulation of the cell cycle, chromatin, and transcription factors together elicits specific patterns of embryonic gene expression. Finally, we illustrate the interplay between zygotic transcription and maternal clearance and show how these two activities combine to reprogram two terminally differentiated gametes into a totipotent embryo.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro Estocado/genética , Transcrição Gênica , Zigoto/metabolismo , Animais , Ciclo Celular , Cromatina/genética , Cromatina/ultraestrutura , Proteínas de Drosophila/fisiologia , Proteínas do Ovo/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/fisiologia , Humanos , Modelos Genéticos , Oócitos/metabolismo , Gravidez , Estabilidade de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , Proteínas de Xenopus/fisiologia , Proteínas de Peixe-Zebra/fisiologia
8.
Mol Cell ; 78(2): 261-274.e5, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32155413

RESUMO

RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Resposta ao Choque Térmico/genética , Humanos , Camundongos , Nucleossomos/genética , Regiões Promotoras Genéticas
9.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411343

RESUMO

In the nascent mesoderm, TBXT expression must be precisely regulated to ensure that cells exit the primitive streak and pattern the anterior-posterior axis, but how varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dosage reduction during early human gastrulation using human induced pluripotent stem cell models of gastrulation and mesoderm differentiation. Multi-omic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprising wild-type, TBXT heterozygous or TBXT null human induced pluripotent stem cells reveal that varying TBXT dosage does not compromise the ability of a cell to differentiate into nascent mesoderm, but instead directly influences the temporal progression of the epithelial-to-mesenchymal transition with wild type transitioning first, followed by TBXT heterozygous and then TBXT null. By differentiating cells into nascent mesoderm in a monolayer format, we further illustrate that TBXT dosage directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that epithelial-to-mesenchymal transition progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Mesoderma/metabolismo , Gástrula/metabolismo , Gastrulação/genética , Diferenciação Celular/genética
10.
EMBO J ; 41(21): e109895, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35971838

RESUMO

Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.


Assuntos
Planárias , Animais , Planárias/fisiologia , Diferenciação Celular/genética , Células-Tronco/metabolismo , Homeostase/genética , Cromatina/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(13): e2215189120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943886

RESUMO

The Mars-van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H2 oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation. Together with atomistic modeling, we identify that this opposite effect of the peroxide on the two oxidation reactions stems from its modification on coordinately unsaturated sites of the oxide surface. By differentiating the chemical functionality between lattice oxygen and peroxide, these results are closely relevant to a wide range of catalytic oxidation reactions using excessively adsorbed oxygen to activate lattice oxygen and tune the activity and selectivity of redox sites.

13.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042775

RESUMO

The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.


Assuntos
Citotoxicidade Imunológica , Neoplasias/metabolismo , Radioterapia , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Perforina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Estreptolisinas
14.
J Infect Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801652

RESUMO

Ebola virus (EBOV) infection results in Ebola virus disease (EVD), an often severe disease with a nonspecific presentation. Since its recognition, periodic outbreaks of EVD continue to occur in sub-Saharan Africa. The 2013-2016 West African EVD outbreak was the largest recorded, resulting in a substantial cohort of EVD survivors with persistent health complaints and variable immune responses. In this study, we characterize humoral immune responses in EVD survivors and their contacts in Eastern Sierra Leone. We found high levels of EBOV IgG in EVD survivors and lower yet substantial antibody levels in household contacts, suggesting subclinical transmission. Neutralizing antibody function was prevalent but variable in EVD survivors, raising questions about the durability of immune responses from natural infection with EBOV. Additionally, we found that certain discrete symptoms-ophthalmologic and auditory-are associated with EBOV IgG seropositivity, while an array of symptoms are associated with the presence of neutralizing antibody.

15.
J Am Chem Soc ; 146(22): 14972-14988, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787738

RESUMO

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.


Assuntos
Caspase 2 , Inibidores de Caspase , Proteômica , Humanos , Caspase 2/metabolismo , Caspase 2/química , Proteômica/métodos , Inibidores de Caspase/farmacologia , Inibidores de Caspase/química , Inibidores de Caspase/metabolismo , Estrutura Molecular , Cisteína Endopeptidases
16.
Am J Physiol Renal Physiol ; 326(6): F1078-F1090, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634130

RESUMO

Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.


Assuntos
Proliferação de Células , Queratina-5 , Regeneração , Células-Tronco , Bexiga Urinária , Urotélio , Animais , Camundongos , Fatores Etários , Animais Recém-Nascidos , Diferenciação Celular , Células Cultivadas , Ciclofosfamida , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Queratina-5/metabolismo , Queratina-5/genética , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo , Transcriptoma , Bexiga Urinária/metabolismo , Urotélio/metabolismo
17.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34142711

RESUMO

Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors. A critical threshold of Wnt agonism stimulated singular axial extensions while maintaining multiple cell lineages, such that organoids displayed regionalized anterior-to-posterior HOX gene expression with hindbrain (HOXB1) regions spatially distinct from brachial (HOXC6) and thoracic (HOXB9) regions. CRISPR interference-mediated silencing of TBXT, a Wnt pathway target, increased neuroepithelial compartmentalization, abrogated HOX expression and disrupted uniaxial elongation. Together, these results demonstrate the potent capacity of caudalized hPSC organoids to undergo axial elongation in a manner that can be used to dissect the cellular organization and patterning decisions that dictate early human nervous system development.


Assuntos
Padronização Corporal , Tubo Neural/embriologia , Organogênese , Organoides , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Neurogênese/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
18.
PLoS Pathog ; 18(12): e1010996, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36520713

RESUMO

Yersinia pestis, the bacterial agent of plague, is enzootic in many parts of the world within wild rodent populations and is transmitted by different flea vectors. The ecology of plague is complex, with rodent hosts exhibiting varying susceptibilities to overt disease and their fleas exhibiting varying levels of vector competence. A long-standing question in plague ecology concerns the conditions that lead to occasional epizootics among susceptible rodents. Many factors are involved, but a major one is the transmission efficiency of the flea vector. In this study, using Oropsylla montana (a ground squirrel flea that is a major plague vector in the western United States), we comparatively quantified the efficiency of the two basic modes of flea-borne transmission. Transmission efficiency by the early-phase mechanism was strongly affected by the host blood source. Subsequent biofilm-dependent transmission by blocked fleas was less influenced by host blood and was more efficient. Mathematical modeling predicted that early-phase transmission could drive an epizootic only among highly susceptible rodents with certain blood characteristics, but that transmission by blocked O. montana could do so in more resistant hosts irrespective of their blood characteristics. The models further suggested that for most wild rodents, exposure to sublethal doses of Y. pestis transmitted during the early phase may restrain rapid epizootic spread by increasing the number of immune, resistant individuals in the population.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Insetos Vetores/microbiologia , Sifonápteros/microbiologia , Roedores
19.
J Vasc Surg ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912996

RESUMO

OBJECTIVE: Long-term outcomes for harvesting techniques for great saphenous vein (GSV) and its impact on the outcomes of infrainguinal arterial bypass remains largely unknown. Endoscopic GSV harvesting (EVH) has emerged as a less invasive alternative to conventional open techniques. Using the Vascular Quality initiative Vascular Implant Surveillance & Interventional Outcomes Network (VQI-VISION) database, we compared the long-term outcomes of infrainguinal arterial bypass using open and endoscopic GSV harvest techniques. METHODS: Patients who underwent infrainguinal GSV bypass between 2010 and 2019 were identified in the VQI-VISION Medicare linked database. Long-term outcomes of major/minor amputations, and reinterventions up to 5 years of follow-up were compared between continuous incisions, skip incision, and EVH, with continuous incisions being the reference group. Secondary outcomes included 30- and 90-day readmission, in addition to surgical site infections and patency rates at 6 months to 2 years postoperatively. Survival analysis using Kaplan-Meier curves and Cox regression hazard models were utilized to compare outcomes between groups. To adjust for multiple comparisons between the study groups, a P value of 2.5% was considered significant. RESULTS: Among the 8915 patients included in the study, continuous and skip vein harvest techniques were used in 44.4% and 43.4% of cases each, whereas 12.3% underwent EVH. The utilization of EVH remained relatively stable at around 12% throughout the study period. Compared with GSV harvest using continuous incisions, EVH was associated with higher rates of reintervention at 1 year (46.5% vs 41.3%; adjusted hazard ratio [aHR], 1.22; 95% confidence interval [CI], 1.06-1.41; P = .01]. However, no significant difference was observed between EVH and continuous incisions, and between skip and continuous incisions in terms of long-term reintervention or major and minor amputations on adjusted analysis. Compared with continuous incision vein harvest, both EVH and skip incisions were associated with lower surgical site infection rates within the first 6 months post-bypass (aHR, 0.53; 95% CI, 0.35-0.82 and aHR, 0.68; 95% CI, 0.53-0.87, respectively). Loss of primary, primary-assisted, and secondary patency was higher after EVH compared with continuous incision vein harvest. Among surgeons performing EVH, comparable long-term outcomes were observed regardless of low (<4 cases/year), medium (4-7 cases/year), or high procedural volumes (>7 cases/year). CONCLUSIONS: Despite higher 1-year reintervention rates, EVH for infrainguinal arterial bypass is not associated with a significant difference in long-term reintervention or amputation rates compared with other harvesting techniques. These outcomes are not influenced by procedural volumes for EVH technique.

20.
Mol Psychiatry ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102484

RESUMO

BACKGROUND: A growing body of literature examines the relationship between peripheral immune function and Alzheimer's Disease (AD) in human populations. Our living systematic review summarizes the characteristics and findings of these studies, appraises their quality, and formulates recommendations for future research. METHODS: We searched the electronic databases PubMed, PsycINFO, and Web of Science, and reviewed references of previous reviews and meta-analyses to identify human studies examining the relationship between any peripheral immune biomarkers and AD up to September 7th, 2023. We examined patterns of reported statistical associations (positive, negative, and null) between each biomarker and AD across studies. Evidence for each biomarker was categorized into four groups based on the proportion of studies reporting different associations: corroborating a positive association with AD, a negative association, a null association, and presenting contradictory findings. A modified Newcastle-Ottawa scale (NOS) was employed to assess the quality of the included studies. FINDINGS: In total, 286 studies were included in this review. The majority were cross-sectional (n = 245, 85.7%) and hospital-based (n = 248, 86.7%), examining relationships between 187 different peripheral immune biomarkers and AD. Cytokines were the most frequently studied group of peripheral immune biomarkers. Evidence supported a positive association with AD for six biomarkers, including IL-6, IL-1ß, IFN-γ, ACT, IL-18, and IL-12, and a negative association for two biomarkers, including lymphocytes and IL-6R. Only a small proportion of included studies (n = 22, 7.7%) were deemed to be of high quality based on quality assessment. INTERPRETATION: Existing research on peripheral immune function and AD exhibits substantial methodological variations and limitations, with a notable lack of longitudinal, population-based studies investigating a broad range of biomarkers with prospective AD outcomes. The extent and manner in which peripheral immune function can contribute to AD pathophysiology remain open questions. Given the biomarkers that we identified to be associated with AD, we posit that targeting peripheral immune dysregulation may present a promising intervention point to reduce the burden of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA