Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837941

RESUMO

The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.

2.
J Mater Chem B ; 12(28): 6905-6916, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38919127

RESUMO

Dydrogesterone, a frequently prescribed synthetic hormone integral to the treatment of diverse gynecological conditions, necessitates precise quantification in complex human plasma. In this study, the development of a portable, smartphone-based electrochemical sensor employing screen-printed gold electrodes (SPAuEs) modified with a biomimetic, molecularly imprinted poly(methacrylic acid-co-methyl methacrylate) (MIP) is presented for dydrogesterone detection in human plasma. FTIR spectroscopy illustrates the transformation of a pre-polymer mixture into a polymerized matrix, while SEM reveals a uniform MIP/SPAuE surface morphology. The sensor fabrication protocol, encompassing MIP/SPAuE composition, polymerization solvent, incubation time, and scan rate, is optimized to achieve enhanced sensitivity. The MIP/SPAuEs sensor exhibits a linear sensor response to dydrogesterone within the concentration range of 1-500 nM, as evidenced by cyclic and differential pulse voltammetry. The MIP/SPAuE sensor demonstrates exceptional sensitivity, recording 8.2 × 10-3 µA nM-1, with a sub-nanomolar limit of detection (LOD = 370 pM), and low limit of quantification (LOQ = 1.12 nM), along with appreciable selectivity over common interferents. In real-world clinical applications, the designed sensor is effectively employed for the rapid and precise determination of dydrogesterone in human blood plasma, achieving a remarkable recovery of 81%. Furthermore, MIP/SPAuE coatings possess suitable stability over 15 days, indicating the robustness of the sensor material for multiple rounds of analysis. The developed sensor provides a sensitive, selective, and cost-effective solution for monitoring dydrogesterone in plasma during various gynecological disorders, allowing for personalized healthcare applications.


Assuntos
Materiais Biomiméticos , Didrogesterona , Smartphone , Humanos , Feminino , Didrogesterona/análise , Didrogesterona/sangue , Materiais Biomiméticos/química , Eletrodos , Medicina de Precisão , Técnicas Eletroquímicas/métodos , Ouro/química , Técnicas Biossensoriais
3.
J Mater Chem B ; 12(28): 6981, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979793

RESUMO

Correction for 'Portable smartphone-enabled dydrogesterone sensors based on biomimetic polymers for personalized gynecological care' by Sobia Ashraf et al., J. Mater. Chem. B, 2024, https://doi.org/10.1039/D4TB00657G.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA