Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 273, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773096

RESUMO

There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/microbiologia , Staphylococcus aureus/genética , RNA Ribossômico 16S/genética , Epiderme/microbiologia , Pele/microbiologia
2.
Cell Tissue Res ; 387(3): 461-477, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35029757

RESUMO

Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their 'seamless' long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood-brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?


Assuntos
Cicatriz , Gliose , Cicatriz/patologia , Eletrodos Implantados , Humanos , Microeletrodos
3.
Cell Tissue Res ; 387(3): 493-498, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850274

RESUMO

Blood coagulation factors can enter the brain under pathological conditions that affect the blood-brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiological brain functions. It is for example well established that the coagulation factor thrombin modulates synaptic plasticity; it affects neural excitability and induces epileptic seizures via activation of protease-activated receptors in the brain. However, major limitations of current experimental and clinical approaches have prevented us from obtaining a profound mechanistic understanding of "neuro-coagulation" in health and disease. Here, we present how novel human relevant models, i.e., Organ-on-Chips equipped with advanced sensors, can help overcoming some of the limitations in the field, thus providing a perspective toward a better understanding of neuro-coagulation in brain homeostasis.


Assuntos
Receptor PAR-1 , Trombina , Encéfalo/metabolismo , Homeostase , Humanos , Receptor PAR-1/metabolismo , Tecnologia , Trombina/metabolismo , Trombina/farmacologia
4.
Acta Derm Venereol ; 102: adv00817, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35818733

RESUMO

The aim of this study was to investigate the early-life development of the skin microbiome in atopic dermatitis. Nineteen infants with atopic dermatitis and 19 healthy infants were evaluated 3 times, at 3 months intervals, within the first 30 months of life. Tape-strips were collected from volar forearms, cheeks, and eczema lesions, and the skin microbiome was assessed by 16S rRNA sequencing. Both the community structure and richness of the skin microbiome of infants with atopic dermatitis differed significantly from that of healthy infants, with greater richness in healthy infants. For infants with atopic dermatitis, the community composition was not dominated by Staphylococci. For healthy infants, community composition and richness correlated significantly with age, while such a pattern was not revealed in infants with atopic dermatitis. This suggests a slower maturation of the skin microbiome in atopic dermatitis, which precedes the staphylococcal predominance observed in older children and adults.


Assuntos
Dermatite Atópica , Microbiota , Humanos , Lactente , Adulto , Criança , Dermatite Atópica/diagnóstico , RNA Ribossômico 16S/genética , Pele
5.
J Infect Dis ; 220(8): 1312-1324, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31253993

RESUMO

BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data. METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads. RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found. CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma/genética , Neoplasias/virologia , Anelloviridae/genética , Anelloviridae/isolamento & purificação , Biópsia , Conjuntos de Dados como Assunto , Feminino , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Humanos , Masculino , Neoplasias/patologia , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Parvovirus/genética , Parvovirus/isolamento & purificação
6.
BMC Cancer ; 18(1): 111, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382305

RESUMO

After publication of the original article [1] it was identified that order of the author list had been presented incorrectly. The author Robert Gniadecki's surname was also incorrect in the original article.

7.
Emerg Infect Dis ; 23(2): 363-365, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28098541

RESUMO

A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains to be investigated.


Assuntos
Melanoma/etiologia , Infecções por Parvoviridae/complicações , Infecções por Parvoviridae/virologia , Parvovirus , Neoplasias Cutâneas/etiologia , DNA Viral , Genes Virais , Humanos , Melanoma/diagnóstico , Infecções por Parvoviridae/diagnóstico , Filogenia , Análise de Sequência de DNA , Neoplasias Cutâneas/diagnóstico , Melanoma Maligno Cutâneo
8.
BMC Cancer ; 17(1): 675, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987144

RESUMO

BACKGROUND: Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. METHODS: Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. RESULTS: NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-ß and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-ß and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-ß and CXCL12 and CCL17. CONCLUSION: Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/genética , Carcinoma Basocelular/genética , Neoplasias Cutâneas/genética , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/efeitos da radiação , Carcinogênese/efeitos da radiação , Carcinoma Basocelular/patologia , Quimiocina CCL17/genética , Quimiocina CCL22/genética , Quimiocina CXCL12/genética , Quimiocinas CC/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucina-6/genética , RNA Mensageiro/genética , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas/patologia , Luz Solar/efeitos adversos , Microambiente Tumoral/genética , Microambiente Tumoral/efeitos da radiação
9.
Sensors (Basel) ; 17(1)2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28042815

RESUMO

There has been substantial progress over the last decade towards miniaturizing implantable microelectrodes for use in Active Implantable Medical Devices (AIMD). Compared to the rapid development and complexity of electrode miniaturization, methods to monitor and assess functional integrity and electrical functionality of these electrodes, particularly during long term stimulation, have not progressed to the same extent. Evaluation methods that form the gold standard, such as stimulus pulse testing, cyclic voltammetry and electrochemical impedance spectroscopy, are either still bound to laboratory infrastructure (impractical for long term in vivo experiments) or deliver no comprehensive insight into the material's behaviour. As there is a lack of cost effective and practical predictive measures to understand long term electrode behaviour in vivo, material investigations need to be performed after explantation of the electrodes. We propose the analysis of the electrode and its environment in situ, to better understand and correlate the effects leading to electrode failure. The derived knowledge shall eventually lead to improved electrode designs, increased electrode functionality and safety in clinical applications. In this paper, the concept, design and prototyping of a sensor framework used to analyse the electrode's behaviour and to monitor diverse electrode failure mechanisms, even during stimulation pulses, is presented. We focused on the electronic circuitry and data acquisition techniques required for a conceptual multi-sensor system. Functionality of single modules and a prototype framework have been demonstrated, but further work is needed to convert the prototype system into an implantable device. In vitro studies will be conducted first to verify sensor performance and reliability.

10.
Environ Microbiol ; 16(4): 1029-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24147969

RESUMO

Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.


Assuntos
Interações Hospedeiro-Patógeno , Mytilus edulis/microbiologia , Água do Mar/química , Vibrio/fisiologia , Animais , Hemócitos/imunologia , Hemólise , Homeostase , Concentração de Íons de Hidrogênio , Mytilus edulis/fisiologia , Fagocitose , Proteólise
11.
Adv Sci (Weinh) ; : e2306244, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460180

RESUMO

Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2 O2 and O2 . This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.

12.
Adv Healthc Mater ; 13(15): e2304169, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324245

RESUMO

Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.


Assuntos
Eletrodos Implantados , Polímeros , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Polímeros/química , Camundongos Endogâmicos C57BL , Próteses Visuais/química , Estimulação Elétrica , Córtex Visual/fisiologia
13.
Adv Healthc Mater ; : e2303401, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354063

RESUMO

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.

15.
Sci Robot ; 8(78): eadg2785, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37163610

RESUMO

Soft robotics facilitates the deployment of large radial electrode arrays on the brain cortex through small craniotomies.


Assuntos
Eletrocorticografia , Robótica , Córtex Cerebral , Encéfalo
16.
Sci Rep ; 13(1): 11444, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454232

RESUMO

Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes. While this phenomenon, known as electrotaxis or galvanotaxis, has been extensively investigated across many cell types, it is typically explored one cell type at a time, which does not accurately represent cellular interactions during complex biological processes. Here we show the co-cultured electrotaxis of epidermal keratinocytes and dermal fibroblasts with a salt-bridgeless microfluidic approach for the first time. The electrotactic response of these cells was first assessed in mono-culture to establish a baseline, resulting in the characteristic cathodic migration for keratinocytes and anodic for fibroblasts. Both cell types retained their electrotactic properties in co-culture leading to clear cellular partition even in the presence of cellular collisions. The methods leveraged here pave the way for future co-culture electrotaxis experiments where the concurrent influence of cell types can be thoroughly investigated.


Assuntos
Fibroblastos , Queratinócitos , Técnicas de Cocultura , Queratinócitos/metabolismo , Movimento Celular/fisiologia , Eletricidade
17.
J Neurosci Methods ; 385: 109761, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470469

RESUMO

Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Camundongos , Ratos , Estimulação Transcraniana por Corrente Contínua/métodos , Reprodutibilidade dos Testes , Microfluídica , Encéfalo/fisiologia , Cabeça
18.
APL Bioeng ; 7(3): 031505, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37736015

RESUMO

Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.

19.
Lab Chip ; 23(23): 4967-4985, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909911

RESUMO

Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Eletrodos , Estimulação Elétrica , Dispositivos Lab-On-A-Chip
20.
J Neural Eng ; 20(3)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386891

RESUMO

Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration.Approach.We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 × 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation.Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOxcoating and higher impedances for electrodes with broken tips.Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.


Assuntos
Cegueira , Animais , Haplorrinos , Utah , Microeletrodos , Potenciais de Ação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA