Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 149(5): 1008-22, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22579044

RESUMO

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Assuntos
Replicação do DNA , Embrião de Mamíferos/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Animais , Instabilidade Cromossômica , DNA Polimerase Dirigida por DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
BMC Cancer ; 17(1): 864, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29254481

RESUMO

BACKGROUND: The global incidence of melanoma has been increasing faster than any other form of cancer. New therapies offer exciting prospects for improved survival, but the development of resistance is a major problem and there remains a need for additional effective melanoma therapy. Platinum compounds, such as cisplatin, are the most effective chemotherapeutics for a number of major cancers, but are ineffective on metastatic melanoma. They cause monofunctional adducts and intrastrand crosslinks that are repaired by nucleotide excision repair, as well as the more toxic interstrand crosslinks that are repaired by a combination of nuclease activity and homologous recombination. METHODS: We investigated the mechanism of melanoma resistance to cisplatin using a panel of melanoma and control cell lines. Cisplatin-induced changes in levels of the key homologous recombination protein RAD51 and compensatory changes in translesion synthesis DNA polymerases were identified by western blotting and qRT-PCR. Flow cytometry, immunofluorescence and western blotting were used to compare the cell cycle and DNA damage response and the induction of apoptosis in cisplatin-treated melanoma and control cells. Ectopic expression of a tagged form of RAD51 and siRNA knockdown of translesion synthesis DNA polymerase zeta were used to investigate the mechanism that allowed cisplatin-treated melanoma cells to continue to replicate. RESULTS: We have identified and characterised a novel DNA damage response mechanism in melanoma. Instead of increasing levels of RAD51 on encountering cisplatin-induced interstrand crosslinks during replication, melanoma cells shut down RAD51 synthesis and instead boost levels of translesion synthesis DNA polymerase zeta to allow replication to proceed. This response also resulted in synthetic lethality to the PARP inhibitor olaparib. CONCLUSIONS: This unusual DNA damage response may be a more appropriate strategy for an aggressive and rapidly growing tumour like melanoma that enables it to better survive chemotherapy, but also results in increased sensitivity of cultured melanoma cells to the PARP inhibitor olaparib.


Assuntos
Recombinação Homóloga/genética , Melanoma/tratamento farmacológico , Rad51 Recombinase/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Recombinação Homóloga/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem
3.
Nucleic Acids Res ; 39(9): 3652-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245041

RESUMO

Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.


Assuntos
Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/química , Ribonuclease H/química , Archaeoglobus fulgidus/enzimologia , Cristalografia , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Humanos , Modelos Moleculares , Peptídeos/química , Ribonuclease H/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31615862

RESUMO

Metastasis, the dispersal of cancer cells from a primary tumor to secondary sites within the body, is the leading cause of cancer-related death. Animal models have been an indispensable tool to investigate the complex interactions between the cancer cells and the tumor microenvironment during the metastatic cascade. The zebrafish (Danio rerio) has emerged as a powerful vertebrate model for studying metastatic events in vivo. The zebrafish has many attributes including ex-utero development, which facilitates embryonic manipulation, as well as optically transparent tissues, which enables in vivo imaging of fluorescently labeled cells in real time. Here, we summarize the techniques which have been used to study cancer biology and metastasis in the zebrafish model organism, including genetic manipulation and transgenesis, cell transplantation, live imaging, and high-throughput compound screening. Finally, we discuss studies using the zebrafish, which have complemented and benefited metastasis research.


Assuntos
Modelos Animais de Doenças , Neoplasias/genética , Neoplasias/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Microambiente Tumoral
5.
Zebrafish ; 13(6): 523-534, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27779463

RESUMO

Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia-glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8-/- zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma.


Assuntos
Glioblastoma/fisiopatologia , Microglia/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Microscopia Confocal , Modelos Animais
6.
DNA Repair (Amst) ; 31: 19-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956741

RESUMO

ERCC1-XPF is a structure-specific endonuclease that is required for the repair of DNA lesions, generated by the widely used platinum-containing cancer chemotherapeutics such as cisplatin, through the Nucleotide Excision Repair and Interstrand Crosslink Repair pathways. Based on mouse xenograft experiments, where ERCC1-deficient melanomas were cured by cisplatin therapy, we proposed that inhibition of ERCC1-XPF could enhance the effectiveness of platinum-based chemotherapy. Here we report the identification and properties of inhibitors against two key targets on ERCC1-XPF. By targeting the ERCC1-XPF interaction domain we proposed that inhibition would disrupt the ERCC1-XPF heterodimer resulting in destabilisation of both proteins. Using in silico screening, we identified an inhibitor that bound to ERCC1-XPF in a biophysical assay, reduced the level of ERCC1-XPF complexes in ovarian cancer cells, inhibited Nucleotide Excision Repair and sensitised melanoma cells to cisplatin. We also utilised high throughput and in silico screening to identify the first reported inhibitors of the other key target, the XPF endonuclease domain. We demonstrate that two of these compounds display specificity in vitro for ERCC1-XPF over two other endonucleases, bind to ERCC1-XPF, inhibit Nucleotide Excision Repair in two independent assays and specifically sensitise Nucleotide Excision Repair-proficient, but not Nucleotide Excision Repair-deficient human and mouse cells to cisplatin.


Assuntos
Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Endonucleases/genética , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Endonucleases/antagonistas & inibidores , Endonucleases/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
7.
J Clin Invest ; 125(1): 413-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25500883

RESUMO

Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.


Assuntos
Autoimunidade/genética , Reparo do DNA , Lúpus Eritematoso Sistêmico/genética , Dímeros de Pirimidina/metabolismo , Proliferação de Células , Células Cultivadas , Análise Mutacional de DNA , Expressão Gênica , Heterozigoto , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Dímeros de Pirimidina/genética , Ribonuclease H/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA