Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 56(8): 4740-4745, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28338319

RESUMO

Metal-organic frameworks (MOFs) have emerged as an important class of hybrid organic-inorganic materials. One of the reasons they have gained remarkable attention is attributed to the possibility of altering them by postsynthetic modification, thereby providing access to new and novel advanced materials. MOFs have been applied in catalysis, gas storage, gas separation, chemical sensing, and drug delivery. However, their bactericidal use has rarely been explored. Herein, we developed a two-step process for the synthesis of zirconium-based MOFs metalated with silver cations as a potent antibacterial agent. The obtained products were thoroughly characterized by powder X-ray diffraction, scanning electron microscopy, UV-visible, IR, thermogravimetric, and Brunauer-Emmett-Teller analyses. Their potency was evaluated against E. coli with a reported minimal inhibitory concentration and minimal bactericidal concentration of as low as 6.5 µg/mL of silver content. Besides the novelty of the system, the advantage of this strategy is that the MOFs could be potentially regenerated and remetalated after each antibacterial test, unlike previously reported frameworks, which involved the destruction of the framework.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Zircônio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Relação Estrutura-Atividade , Zircônio/química
2.
ACS Appl Mater Interfaces ; 15(1): 984-996, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548441

RESUMO

A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance-Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott-Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott-Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.

3.
Dalton Trans ; 49(33): 11565-11576, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32749412

RESUMO

In this work, a series of nine Re(i) diimine dicarbonyl complexes of the general molecular formula cis-[Re(N^N)2(CO)2]+ (N^N are various 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) derivatives) were prepared and spectroscopically investigated to systematically evaluate the photophysical consequences of various substituents resident on the diimine ligands. These panchromatic absorbing chromophores were structurally characterized, evaluated for their electrochemical and spectroelectrochemical properties, and investigated using static and dynamic electronic absorption, photoluminescence (PL), and infrared spectroscopy from ultrafast to supra-nanosecond time scales. The ultrafast time-resolved infrared (TRIR) analysis was further supported by electronic structure calculations which characterized the changes within the two C[triple bond, length as m-dash]O vibrational modes upon formation of the metal-to-ligand charge transfer (MLCT) excited state. The MLCT excited state decay of this series of dicarbonyl molecules appears completely consistent with energy-gap law behavior, where the nonradiative decay rate constants increase logarithmically with decreasing excited state - ground state energy separation, except in anticipated cases where the substituents were phenyl or tert-butyl.

4.
Dalton Trans ; 47(3): 799-806, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29250616

RESUMO

A new porous indium metal organic framework namely (AUBM-1) was successfully synthesized via a solvothermal reaction of pyromellitic acid and indium chloride. Single crystal X-ray analysis revealed the formation of a 3D framework with a pts topology. The resulting MOF structure showed high chemical stability at different pH values. Thus, the activated indium MOF was applied for As removal from water for the first time and showed a high arsenate uptake capacity of 103.1 mg g-1 at neutral pH, which is higher than the commercial adsorbents (usually less than 100 mg g-1 at neutral pH). Finally, the kinetics and thermodynamic studies revealed that the As adsorption was an endothermic process and followed a pseudo-second-order kinetic model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA