Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29794156

RESUMO

Integrin ß3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely ß3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the ß3-dependent adhesome. We show that depletion of ß3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. ß3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when ß3-integrin levels are reduced.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Integrina beta3/genética , Animais , Anexina A2/genética , Proteínas Cromossômicas não Histona/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular , Regulação da Expressão Gênica/genética , Humanos , Espectrometria de Massas , Camundongos , Microtúbulos/genética , Microtúbulos/patologia , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas rac1 de Ligação ao GTP/genética
2.
Biochem Soc Trans ; 42(6): 1590-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399575

RESUMO

For nearly two decades now, the RGD (Arg-Gly-Asp)-binding αvß3-integrin has been a focus of anti-angiogenic drug design. These inhibitors are well-tolerated, but have shown only limited success in patients. Over the years, studies in ß3-integrin-knockout mice have shed some light on possible explanations for disappointing clinical outcomes. However, studying angiogenesis in ß3-integrin-knockout mice is a blunt tool to investigate ß3-integrin's role in pathological angiogenesis. Since establishing our laboratory at University of East Anglia (UEA), we have adopted more refined models of genetically manipulating the expression of the ß3-integrin subunit. The present review will highlight some of our findings from these models and describe how data from them have forced us to rethink how targeting αvß3-integrin expression affects tumour angiogenesis and cancer progression. Revisiting the fundamental biology behind how this integrin regulates tumour growth and angiogenesis, we believe, is the key not only to understanding how angiogenesis is normally co-ordinated, but also in success with drugs directed against it.


Assuntos
Endotélio Vascular/metabolismo , Integrinas/fisiologia , Humanos , Integrinas/metabolismo
3.
Front Cell Dev Biol ; 8: 395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528960

RESUMO

Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on ß3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.

4.
Sci Signal ; 12(567)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723174

RESUMO

Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry-based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hipóxia , Neovascularização Patológica/genética , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/genética
5.
Sci Rep ; 7(1): 12651, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978924

RESUMO

Angiogenesis plays an important role in hepatocellular carcinoma (HCC), the inhibition of which is explored for cancer prevention and treatment. The dietary phytochemical sulforaphane (SFN) is known for its anti-cancer properties in vitro and in vivo; but until now, no study has focused on the role of SFN in HCC tumor angiogenesis. In the present study, in vitro cell models using a HCC cell line, HepG2, and human endothelial cells, HUVECs, as well as ex vivo and in vivo models have been used to investigate the anti-tumor and anti-angiogenic effect of SFN. The results showed that SFN decreased HUVEC cell viability, migration and tube formation, all of which are important steps in angiogenesis. More importantly, SFN markedly supressed HepG2-stimulated HUVEC migration, adhesion and tube formation; which may be due to its inhibition on STAT3/HIF-1α/VEGF signalling in HepG2 cells. In addition, SFN significantly reduced HepG2 tumor growth in a modified chick embryo chorioallantoic membrane (CAM) assay, associated with a decrease of HIF-1α and VEGF expression within tumors. Collectively, these findings provide new insights into the inhibitory effect of SFN on HCC tumor angiogenesis as well as tumor growth, and indicate that SFN has potential for the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Fator de Transcrição STAT3/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Isotiocianatos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
6.
Dis Model Mech ; 8(9): 1105-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159543

RESUMO

Anti-angiogenic treatments against αvß3-integrin fail to block tumour growth in the long term, which suggests that the tumour vasculature escapes from angiogenesis inhibition through αvß3-integrin-independent mechanisms. Here, we show that suppression of ß3-integrin in mice leads to the activation of a neuropilin-1 (NRP1)-dependent cell migration pathway in endothelial cells via a mechanism that depends on NRP1's mobilisation away from mature focal adhesions following VEGF-stimulation. The simultaneous genetic targeting of both molecules significantly impairs paxillin-1 activation and focal adhesion remodelling in endothelial cells, and therefore inhibits tumour angiogenesis and the growth of already established tumours. These findings provide a firm foundation for testing drugs against these molecules in combination to treat patients with advanced cancers.


Assuntos
Adesões Focais , Integrina beta3/metabolismo , Integrinas/antagonistas & inibidores , Neovascularização Patológica , Neuropilina-1/metabolismo , Animais , Adesão Celular , Citoplasma , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heterozigoto , Humanos , Pulmão/fisiopatologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação , Transplante de Neoplasias , Paxilina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA