Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 403(10432): 1192-1204, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38461842

RESUMO

Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.


Assuntos
COVID-19 , Medicina , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Pandemias , RNA Mensageiro/uso terapêutico
2.
J Am Chem Soc ; 146(6): 3627-3634, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306714

RESUMO

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Assuntos
Dendrímeros , Nanopartículas , Isomerismo , Dendrímeros/química , RNA Mensageiro/genética , Luciferases
3.
J Am Chem Soc ; 145(34): 18760-18766, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606244

RESUMO

Delivery of nucleic acids with viral and synthetic vectors has pioneered genetic nanomedicine. Four-component lipid nanoparticles (LNPs) consisting of ionizable lipids, phospholipids, cholesterol, and PEG-conjugated lipids, assembled by microfluidic or T-tube, are the benchmark synthetic vector for delivery of mRNA. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery systems for mRNA were developed by us to complement LNPs. IAJDs consist of multifunctional hydrophilic low-generation dendrons or minidendrons conjugated to hydrophobic dendrons. They were inspired by amphiphilic Janus dendrimers and glycodendrimers. IAJDs coassemble with mRNA into predictable-size vesicles, named dendrimersome nanoparticles (DNPs), by simple injection in acetate buffer, rather than by the complex technology required by LNPs. Assembly of DNPs by simple injection together with sequence design in the hydrophilic and hydrophobic modules of IAJDs endowed rapid screening to access discovery. Molecular design principles for targeted delivery were elaborated when the branching points of IAJDs were constructed from symmetrically and nonsymmetrically substituted plant phenolic acids interconnected by pentaerythritol (PE). Here, we report the first library containing simplified IAJDs constructed in only three steps from symmetrically trialkylated PE in the hydrophobic domain and four different piperazine-based ionizable amines in the hydrophilic part. Rapid coassembly with mRNA and in vivo screening led to the discovery of the two most active IAJDs targeting the spleen, liver, and lymph nodes, one predominantly to the spleen and liver and six delivering equally to the spleen, liver, lung, and lymph nodes. These IAJDs represent the simplest synthetic vectors and the first viral or synthetic system delivering equally to multiple organs.


Assuntos
Dendrímeros , RNA Mensageiro/genética , Fígado , Lipídeos
4.
J Am Chem Soc ; 144(11): 4746-4753, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263098

RESUMO

Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.


Assuntos
COVID-19 , Dendrímeros , Nanopartículas , Vacinas contra COVID-19 , Dendrímeros/química , Humanos , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética
5.
J Am Chem Soc ; 143(43): 17975-17982, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672554

RESUMO

Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.


Assuntos
Dendrímeros/química , RNA Mensageiro/química , Aminas/química , Animais , Ésteres/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Camundongos , Nanopartículas/química , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo
6.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324336

RESUMO

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Tensoativos/química , Animais , Dendrímeros/síntese química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Estudo de Prova de Conceito , Tensoativos/síntese química
7.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L539-L549, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411060

RESUMO

Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.


Assuntos
Macrófagos Alveolares/imunologia , Compostos Nitrosos/metabolismo , Infecções por Pneumocystis/genética , Processamento de Proteína Pós-Traducional , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Feminino , Imunidade Inata , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Compostos Nitrosos/imunologia , Fenótipo , Pneumocystis/crescimento & desenvolvimento , Pneumocystis/patogenicidade , Infecções por Pneumocystis/imunologia , Infecções por Pneumocystis/metabolismo , Infecções por Pneumocystis/microbiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
8.
Am J Respir Cell Mol Biol ; 59(6): 723-732, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095976

RESUMO

Pulmonary lymphangioleiomyomatosis (LAM) is a slow-progressing metastatic disease that is driven by mutations in the tumor suppressor tuberous sclerosis complex 1/2 (TSC1/2). Rapamycin inhibits LAM cell proliferation and is the only approved treatment, but it cannot cause the regression of existing lesions and can only stabilize the disease. However, in other cancers, immunotherapies such as checkpoint blockade against PD-1 and its ligand PD-L1 have shown promise in causing tumor regression and even curing some patients. Thus, we asked whether PD-L1 has a role in LAM progression. In vitro, PD-L1 expression in murine Tsc2-null cells is unaffected by mTOR inhibition with torin but can be upregulated by IFN-γ. Using immunohistochemistry and single-cell flow cytometry, we found increased PD-L1 expression both in human lung tissue from patients with LAM and in Tsc2-null lesions in a murine model of LAM. In this model, PD-L1 is highly expressed in the lung by antigen-presenting and stromal cells, and activated T cells expressing PD-1 infiltrate the affected lung. In vivo treatment with anti-PD-1 antibody significantly prolongs mouse survival in the model of LAM. Together, these data demonstrate that PD-1/PD-L1-mediated immunosuppression may occur in LAM, and suggest new opportunities for therapeutic targeting that may provide benefits beyond those of rapamycin.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/imunologia , Estudos de Casos e Controles , Proliferação de Células , Modelos Animais de Doenças , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/imunologia , Linfangioleiomiomatose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/imunologia , Esclerose Tuberosa/patologia , Regulação para Cima
9.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972182

RESUMO

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Assuntos
Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Angiomiolipoma/tratamento farmacológico , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Angiomiolipoma/patologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Interferência de RNA , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Carga Tumoral/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética
10.
Am J Respir Cell Mol Biol ; 53(1): 96-104, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25474372

RESUMO

Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations of the tumor suppressor genes, tuberous sclerosis complex (TSC) 1 or TSC2. LAM affects women almost exclusively, and it is characterized by neoplastic growth of atypical smooth muscle-like TSC2-null LAM cells in the pulmonary interstitium, cystic destruction of lung parenchyma, and progressive decline in lung function. In this study, we hypothesized that TSC2-null lesions promote a proinflammatory environment, which contributes to lung parenchyma destruction. Using a TSC2-null female murine LAM model, we demonstrate that TSC2-null lesions promote alveolar macrophage accumulation, recruitment of immature multinucleated cells, an increased induction of proinflammatory genes, nitric oxide (NO) synthase 2, IL-6, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and up-regulation of IL-6, KC, MCP-1, and transforming growth factor-ß1 levels in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid also contained an increased level of surfactant protein (SP)-D, but not SP-A, significant reduction of SP-B levels, and a resultant increase in alveolar surface tension. Consistent with the growth of TSC2-null lesions, NO levels were also increased and, in turn, modified SP-D through S-nitrosylation, forming S-nitrosylated SP-D, a known consequence of lung inflammation. Progressive growth of TSC2-null lesions was accompanied by elevated levels of matrix metalloproteinase-3 and -9. This report demonstrates a link between growth of TSC2-null lesions and inflammation-induced surfactant dysfunction that might contribute to lung destruction in LAM.


Assuntos
Linfangioleiomiomatose/metabolismo , Linfangioleiomiomatose/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Animais , Lavagem Broncoalveolar , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Linfangioleiomiomatose/genética , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Mutantes , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1447-54, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432869

RESUMO

Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.


Assuntos
Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Indazóis/farmacologia , Pulmão/efeitos dos fármacos , Linfangioleiomiomatose/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Axitinibe , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Regulação para Cima/efeitos dos fármacos , Fator D de Crescimento do Endotélio Vascular/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 309(9): L959-69, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320150

RESUMO

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.


Assuntos
Remodelação das Vias Aéreas , Modelos Biológicos , Óxido Nítrico Sintase Tipo II/metabolismo , Alvéolos Pulmonares/metabolismo , Proteína D Associada a Surfactante Pulmonar/deficiência , Mecânica Respiratória , Animais , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Alvéolos Pulmonares/patologia , Proteína D Associada a Surfactante Pulmonar/metabolismo
13.
Am J Respir Cell Mol Biol ; 49(5): 704-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23947572

RESUMO

Mutations of the tumor suppressor genes tuberous sclerosis complex (TSC)1 and TSC2 cause pulmonary lymphangioleiomyomatosis (LAM) and tuberous sclerosis (TS). Current rapamycin-based therapies for TS and LAM have a predominantly cytostatic effect, and disease progression resumes with therapy cessation. Evidence of RhoA GTPase activation in LAM-derived and human TSC2-null cells suggests that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor statins can be used as potential adjuvant agents. The goal of this study was to determine which statin (simvastatin or atorvastatin) is more effective in suppressing TSC2-null cell growth and signaling. Simvastatin, but not atorvastatin, showed a concentration-dependent (0.5-10 µM) inhibitory effect on mouse TSC2-null and human LAM-derived cell growth. Treatment with 10 µM simvastatin induced dramatic disruption of TSC2-null cell monolayer and cell rounding; in contrast, few changes were observed in cells treated with the same concentration of atorvastatin. Combined treatment of rapamycin with simvastatin but not with atorvastatin showed a synergistic growth-inhibitory effect on TSC2-null cells. Simvastatin, but not atorvastatin, inhibited the activity of prosurvival serine-threonine kinase Akt and induced marked up-regulation of cleaved caspase-3, a marker of cell apoptosis. Simvastatin, but not atorvastatin, also induced concentration-dependent inhibition of p42/p44 Erk and mTORC1. Thus, our data show growth-inhibitory and proapoptotic effects of simvastatin on TSC2-null cells compared with atorvastatin. These findings have translational significance for combinatorial therapeutic strategies of simvastatin to inhibit TSC2-null cell survival in TS and LAM.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Linfangioleiomiomatose/tratamento farmacológico , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Proteínas Supressoras de Tumor/deficiência , Animais , Atorvastatina , Caspase 3/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Linfangioleiomiomatose/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
14.
Biochim Biophys Acta ; 1820(6): 763-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22183030

RESUMO

BACKGROUND: Surfactant protein D (SP-D) is a member of the family of proteins termed collagen-like lectins or "collectins" that play a role in non-antibody-mediated innate immune responses [1]. The primary function of SP-D is the modulation of host defense and inflammation [2]. SCOPE OF REVIEW: This review will discuss recent findings on the physiological importance of SP-D S-nitrosylation in biological systems and potential mechanisms that govern SP-D mediated signaling. MAJOR CONCLUSIONS: SP-D appears to have both pro- and anti-inflammatory signaling functions. SP-D multimerization is a critical feature of its function and plays an important role in efficient innate host defense. Under baseline conditions, SP-D forms a multimer in which the N-termini are hidden in the center and the C-termini are on the surface. This multimeric form of SP-D is limited in its ability to activate inflammation. However, NO can modify key cysteine residues in the hydrophobic tail domain of SP-D resulting in a dissociation of SP-D multimers into trimers, exposing the S-nitrosylated N-termini. The exposed S-nitrosylated tail domain binds to the calreticulin/CD91 receptor complex and initiates a pro-inflammatory response through phosphorylation of p38 and NF-κB activation [3,4]. In addition, the disassembled SP-D loses its ability to block TLR4, which also results in activation of NF-κB. GENERAL SIGNIFICANCE: Recent studies have highlighted the capability of NO to modify SP-D through S-nitrosylation, causing the activation of a pro-inflammatory role for SP-D [3]. This represents a novel mechanism both for the regulation of SP-D function and NO's role in innate immunity, but also demonstrates that the S-nitrosylation can control protein function by regulating quaternary structure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.


Assuntos
Inflamação/metabolismo , Óxido Nítrico/metabolismo , Pneumonia/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Calreticulina/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , NF-kappa B/metabolismo , Nitrosação , Fosforilação , Pneumonia/imunologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteína D Associada a Surfactante Pulmonar/química , Ratos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Am J Physiol Renal Physiol ; 304(10): F1295-307, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23486012

RESUMO

Aquaporin 11 (AQP11) is a newly described member of the protein family of transport channels. AQP11 associates with the endoplasmic reticulum (ER) and is highly expressed in proximal tubular epithelial cells in the kidney. Previously, we identified and characterized a recessive mutation of the highly conserved Cys227 to Ser227 in mouse AQP11 that caused proximal tubule (PT) injury and kidney failure in mutant mice. The current study revealed induction of ER stress, unfolded protein response, and apoptosis as molecular mechanisms of this PT injury. Cys227Ser mutation interfered with maintenance of AQP11 oligomeric structure. AQP11 is abundantly expressed in the S1 PT segment, a site of major renal glucose flux, and Aqp11 mutant mice developed PT-specific mitochondrial injury. Glucose increased AQP11 protein expression in wild-type kidney and upregulation of AQP11 expression by glucose in vitro was prevented by phlorizin, an inhibitor of sodium-dependent glucose transport across PT. Total AQP11 levels in heterozygotes were higher than in wild-type mice but were not further increased in response to glucose. In Aqp11 insufficient PT cells, glucose potentiated increases in reactive oxygen species (ROS) production. ROS production was also elevated in Aqp11 mutation carriers. Phenotypically normal mice heterozygous for the Aqp11 mutation repeatedly treated with glucose showed increased blood urea nitrogen levels that were prevented by the antioxidant sulforaphane or by phlorizin. Our results indicate an important role for AQP11 to prevent glucose-induced oxidative stress in proximal tubules.


Assuntos
Aquaporinas/genética , Retículo Endoplasmático/metabolismo , Rim/metabolismo , Estresse Oxidativo/genética , Insuficiência Renal/genética , Animais , Aquaporinas/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal/metabolismo , Regulação para Cima
16.
Lung ; 191(3): 295-303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23435873

RESUMO

BACKGROUND: Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS: Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS: In lipopolysaccharide-challenged mice, the level of SP-D in BAL increased within 6 h, peaked at 51 h (4,518 ng/ml), and returned to base level at 99 h (612 ng/ml). Serum levels of SP-D increased immediately (8.6 ng/ml), peaked at 51 h (16 ng/ml), and returned to base levels at 99 h (3.8 ng/ml). In a subacute bleomycin inflammation model, SP-D levels were 4,625 and 367 ng/ml in BAL and serum, respectively, 8 days after exposure. In a chronic Pc inflammation model, the highest level of SP-D was observed 6 weeks after inoculation, with BAL and serum levels of 1,868 and 335 ng/ml, respectively. CONCLUSIONS: We conclude that serum levels of SP-D increase during lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized systemically. The study also confirms the concept of using increased SP-D serum levels as a biomarker of especially chronic airway inflammation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Pneumonia por Pneumocystis/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/microbiologia , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Lipopolissacarídeos , Pulmão/microbiologia , Lesão Pulmonar/sangue , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Pneumocystis carinii , Pneumonia por Pneumocystis/sangue , Pneumonia por Pneumocystis/microbiologia , Proteína D Associada a Surfactante Pulmonar/sangue , Fatores de Tempo
17.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376020

RESUMO

Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

18.
Am J Respir Crit Care Med ; 183(7): 856-64, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21131470

RESUMO

RATIONALE: Surfactant protein D (SP-D), a 43-kD collectin, is synthesized and secreted by airway epithelia as a dodecamer formed by assembly of four trimeric subunits. We have previously shown that the quaternary structure of SP-D can be altered during inflammatory lung injury through its modification by S-nitrosylation, which in turn alters its functional behavior producing a proinflammatory response in effector cells. OBJECTIVES: We hypothesized that alterations in structure and function of SP-D may occur in humans with acute allergic inflammation. METHODS: Bronchoalveolar lavage (BAL) fluid was collected from 15 nonsmoking patients with mild intermittent allergic asthma before and 24 hours after segmental provocation with saline, allergen, LPS, and mixtures of allergen and LPS. Structural modifications of SP-D were analyzed by native and sodium dodecyl sulfate gel electrophoresis. MEASUREMENTS AND MAIN RESULTS: The multimeric structure of native SP-D was found to be disrupted after provocation with allergen or a mixture of allergen and LPS. Interestingly, under reducing conditions, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that 7 of 15 patients with asthma developed an abnormal cross-linked SP-D band after segmental challenge with either allergen or a mixture of allergen with LPS but not LPS alone. Importantly, patients with asthma with cross-linked SP-D demonstrated significantly higher levels of BAL eosinophils, nitrogen oxides, IL-4, IL-5, IL-13, and S-nitrosothiol-SP-D compared with patients without cross-linked SP-D. CONCLUSIONS: We conclude that segmental allergen challenge results in changes of SP-D multimeric structure and that these modifications are associated with an altered local inflammatory response in the distal airways.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/imunologia , Hipersensibilidade Respiratória/imunologia , Adulto , Análise de Variância , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiotaxia/imunologia , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Immunoblotting , Masculino , Valores de Referência , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Estudos de Amostragem , Índice de Gravidade de Doença , Adulto Jovem
19.
Am J Respir Crit Care Med ; 184(4): 449-58, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21616998

RESUMO

RATIONALE: The pulmonary phenotype of Hermansky-Pudlak syndrome (HPS) in adults includes foamy alveolar type 2 cells, inflammation, and lung remodeling, but there is no information about ontogeny or early disease mediators. OBJECTIVES: To establish the ontogeny of HPS lung disease in an animal model, examine disease mediators, and relate them to patients with HPS1. METHODS: Mice with mutations in both HPS1/pale ear and HPS2/AP3B1/pearl (EPPE mice) were studied longitudinally. Total lung homogenate, lung tissue sections, and bronchoalveolar lavage (BAL) were examined for phospholipid, collagen, histology, cell counts, chemokines, surfactant protein D (SP-D), and S-nitrosylated SP-D. Isolated alveolar epithelial cells were examined for expression of inflammatory mediators, and chemotaxis assays were used to assess their importance. Pulmonary function test results and BAL from patients with HPS1 and normal volunteers were examined for clinical correlation. MEASUREMENTS AND MAIN RESULTS: EPPE mice develop increased total lung phospholipid, followed by a macrophage-predominant pulmonary inflammation, and lung remodeling including fibrosis. BAL fluid from EPPE animals exhibited early accumulation of both SP-D and S-nitrosylated SP-D. BAL fluid from patients with HPS1 exhibited similar changes in SP-D that correlated inversely with pulmonary function. Alveolar epithelial cells demonstrated expression of both monocyte chemotactic protein (MCP)-1 and inducible nitric oxide synthase in juvenile EPPE mice. Last, BAL from EPPE mice and patients with HPS1 enhanced migration of RAW267.4 cells, which was attenuated by immunodepletion of SP-D and MCP-1. CONCLUSIONS: Inflammation is initiated from the abnormal alveolar epithelial cells in HPS, and S-nitrosylated SP-D plays a significant role in amplifying pulmonary inflammation.


Assuntos
Modelos Animais de Doenças , Síndrome de Hermanski-Pudlak , Camundongos , Pneumonia/etiologia , Alvéolos Pulmonares/fisiopatologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Mucosa Respiratória/fisiopatologia , Envelhecimento/metabolismo , Animais , Movimento Celular , Quimiocina CCL2/metabolismo , Fatores Quimiotáticos/metabolismo , Citocinas/metabolismo , Fibrose , Síndrome de Hermanski-Pudlak/fisiopatologia , Humanos , Pulmão/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Compostos Nitrosos/metabolismo , Fosfolipídeos/metabolismo , Alvéolos Pulmonares/patologia , Índice de Gravidade de Doença , Fatores de Tempo
20.
Am J Respir Crit Care Med ; 183(10): 1344-53, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21257790

RESUMO

RATIONALE: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI. OBJECTIVES: To identify ALI risk variants after major trauma using a large-scale candidate gene approach. METHODS: We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease-centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10(-4)) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot. MEASUREMENTS AND MAIN RESULTS: Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06-1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038). CONCLUSIONS: An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/genética , Angiopoietina-2/sangue , Angiopoietina-2/genética , Adulto , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Haplótipos , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA