Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Knee Surg Sports Traumatol Arthrosc ; 31(11): 4886-4894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572141

RESUMO

PURPOSE: Acute syndesmotic ankle injuries continue to impose a diagnostic dilemma and it remains unclear whether weightbearing and/or external rotation should be added during the imaging process. Therefore, the aim of this study was to assess if combined weightbearing and external rotation increases the diagnostic sensitivity of syndesmotic ankle instability using weightbearing CT (WBCT) imaging, compared to isolated weightbearing. METHODS: In this retrospective study, patients with an acute syndesmotic ankle injury were analysed using a WBCT (N = 21; Age = 31.6 ± 14.1 years old). Inclusion criteria were an MRI confirmed syndesmotic ligament injury imaged by a WBCT of the ankle during weightbearing and combined weightbearing-external rotation. Exclusion criteria consisted of fracture associated syndesmotic injuries. Three-dimensional (3D) models were generated from the CT slices. Tibiofibular displacement and talar rotation were quantified using automated 3D measurements (anterior tibiofibular distance (ATFD), Alpha angle, posterior Tibiofibular distance (PTFD) and Talar rotation (TR) angle in comparison to the contralateral non-injured ankle. RESULTS: The difference in neutral-stressed Alpha angle and ATFD showed a significant difference between patients with a syndesmotic ankle lesion and contralateral control (P = 0.046 and P = 0.039, respectively). The difference in neutral-stressed PTFD and TR angle did not show a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (n.s.). CONCLUSION: Application of combined weightbearing-external rotation reveals an increased ATFD in patients with syndesmotic ligament injuries. This study provides the first insights based on 3D measurements to support the potential relevance of applying external rotation during WBCT imaging. In clinical practice, this could enhance the current diagnostic accuracy of subtle syndesmotic instability in a non-invasive manner. However, to what extent certain displacement patterns require operative treatment strategies has yet to be determined in future studies. LEVEL OF EVIDENCE: Level III.

2.
Foot Ankle Surg ; 26(1): 78-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30581061

RESUMO

BACKGROUND: A medializing calcaneal osteotomy is frequently performed to correct adult-acquired flatfoot deformities, but there is lack of data on the associated three-dimensional variables defining the final correction. The aim of this study was to assess the correlation between the pre-operative hindfoot valgus deformity and calcaneal osteotomy angles and the post-operative calcaneal displacement. METHODS: Weight-bearing CT scans obtained pre- and post-operatively were retrospectively analyzed for sixteen patients. Corresponding three-dimensional bone models were used to measure valgus deformity pre- and post-operatively, inclination of the osteotomy and displacement of the calcaneus. Linear regression was conducted to assess the relationship between these measurements. RESULTS: On average, the hindfoot valgus changed from 13.1° (±4.6) pre-operatively to 5.7° (±4.3) post-operatively. A mean inferior displacement of 3.2mm (±1.3) was observed along the osteotomy with a mean inclination of 54.6° (±5.6), 80.5° (±10.7), -13.7° (±15.7) in the axial, sagittal and coronal planes, respectively. A statistically significant positive relationship (p<.05, R2=0.6) was found between the pre-operative valgus, the axial osteotomy inclination, and the inferior displacement. CONCLUSIONS: This study shows that the degree of pre-operative hindfoot valgus and the axial osteotomy angle are predictive factors for the amount of post-operative inferior displacement of the calcaneus. These findings demonstrate the added value of a computer-based pre-operative planning in clinical practice. Level of evidence II Prospective comparative study.


Assuntos
Calcâneo/cirurgia , Pé Chato/diagnóstico , Imageamento Tridimensional , Osteotomia/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Calcâneo/diagnóstico por imagem , Feminino , Pé Chato/fisiopatologia , Pé Chato/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Suporte de Carga , Adulto Jovem
3.
BMC Musculoskelet Disord ; 18(1): 83, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209142

RESUMO

BACKGROUND: Several types of Magnetic resonance imaging (MRI) are commonly used in imaging of femoroacetabular impingement (FAI), however till now there are no clear protocols and recommendations for each type. The aim of this meta-analysis is to detect the accuracy of conventional magnetic resonance imaging (cMRI), direct magnetic resonance arthrography (dMRA) and indirect magnetic resonance arthrography (iMRA) in the diagnosis of chondral and labral lesions in femoroacetabular impingement (FAI). METHODS: A literature search was finalized on the 17th of May 2016 to collect all studies identifying the accuracy of cMRI, dMRA and iMRA in diagnosing chondral and labral lesions associated with FAI using surgical results (arthroscopic or open) as a reference test. Pooled sensitivity and specificity with 95% confidence intervals using a random-effects meta-analysis for MRI, dMRA and iMRA were calculated also area under receiver operating characteristic (ROC) curve (AUC) was retrieved whenever possible where AUC is equivocal to diagnostic accuracy. RESULTS: The search yielded 192 publications which were reviewed according inclusion and exclusion criteria then 21 studies fulfilled the eligibility criteria for the qualitative analysis with a total number of 828 cases, lastly 12 studies were included in the quantitative meta-analysis. Meta-analysis showed that as regard labral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.864, 0.833 and 0.88 and for dMRA were 0.91, 0.58 and 0.92. While in chondral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.76, 0.72 and 0.75 and for dMRA were 0.75, 0.79 and 0.83, while for iMRA were sensitivity of 0.722 and specificity of 0.917. CONCLUSIONS: The present meta-analysis showed that the diagnostic test accuracy was superior for dMRA when compared with cMRI for detection of labral and chondral lesions. The diagnostic test accuracy was superior for labral lesions when compared with chondral lesions in both cMRI and dMRA. Promising results are obtained concerning iMRA but further studies still needed to fully assess its diagnostic accuracy.


Assuntos
Impacto Femoroacetabular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Humanos
4.
Front Bioeng Biotechnol ; 12: 1348977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515625

RESUMO

Background: Given the inherent variability in walking speeds encountered in day-to-day activities, understanding the corresponding alterations in ankle biomechanics would provide valuable clinical insights. Therefore, the objective of this study was to examine the influence of different walking speeds on biomechanical parameters, utilizing gait analysis and musculoskeletal modelling. Methods: Twenty healthy volunteers without any lower limb medical history were included in this study. Treadmill-assisted gait-analysis with walking speeds of 0.8 m/s and 1.1 m/s was performed using the Gait Real-time Analysis Interactive Lab (GRAIL®). Collected kinematic data and ground reaction forces were processed via the AnyBody® modeling system to determine ankle kinetics and muscle forces of the lower leg. Data were statistically analyzed using statistical parametric mapping to reveal both spatiotemporal and magnitude significant differences. Results: Significant differences were found for both magnitude and spatiotemporal curves between 0.8 m/s and 1.1 m/s for the ankle flexion (p < 0.001), subtalar force (p < 0.001), ankle joint reaction force and muscles forces of the M. gastrocnemius, M. soleus and M. peroneus longus (α = 0.05). No significant spatiotemporal differences were found between 0.8 m/s and 1.1 m/s for the M. tibialis anterior and posterior. Discussion: A significant impact on ankle joint kinematics and kinetics was observed when comparing walking speeds of 0.8 m/s and 1.1 m/s. The findings of this study underscore the influence of walking speed on the biomechanics of the ankle. Such insights may provide a biomechanical rationale for several therapeutic and preventative strategies for ankle conditions.

5.
Sci Rep ; 14(1): 8829, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632378

RESUMO

Over the past 30 years, research on meniscal kinematics has been limited by challenges such as low-resolution imaging and capturing continuous motion from static data. This study aimed to develop a computational knee model that overcomes these limitations and enables the continuous assessment of meniscal dynamics. A high-resolution MRI dataset (n = 11) was acquired in 4 configurations of knee flexion. In each configuration, the menisci were modeled based on the underlying osseous anatomy. Principal Polynomial Shape Analysis (PPSA) was employed for continuous meniscal modeling. Maximal medial anterior horn displacement occurred in 60° of flexion, equaling 6.24 mm posteromedial, while the posterior horn remained relatively stable. At 90° of flexion, the lateral anterior and posterior horn displaced posteromedially, amounting 5.70 mm and 6.51 mm respectively. The maximal observed Average Surface Distance (ASD) equaled 0.70 mm for lateral meniscal modeling in 90° of flexion. Based on our results, a strong relation between meniscal dynamics and tibiofemoral kinematics was confirmed. Expanding on static meniscal modeling and employing PPSA, we derived and validated a standardized and systematic methodological workflow.


Assuntos
Articulação do Joelho , Meniscos Tibiais , Fenômenos Biomecânicos , Meniscos Tibiais/anatomia & histologia , Imageamento por Ressonância Magnética , Amplitude de Movimento Articular
6.
Front Aging ; 4: 977426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970729

RESUMO

Cartilage is a tissue that consist of very few cells embedded in a highly negatively charged extracellular matrix (ECM). This tissue is dealing with several electrical potentials which have been shown to control the production of ECM. Cartilage is present at joints and is constantly prone to degradation. Failing to repair the damage will result in the occurrence of osteoarthritis (OA). This perspective aims to link biophysical insights with biomolecular research in order to provide an alternative view on the possible causes of OA. Firstly, we hypothesize the existence of a threshold potential, which should be reached in order to initiate repair but if not met, unrepaired damage will evolve to OA. Measurements of the magnitude of this threshold electrical potential would be a helpful diagnostic tool. Secondly, since electrical potential alterations can induce chondrocytes to synthesize ECM, a cellular sensor must be present. We here propose an analogy to the hypocalcemia 'unshielding' situation to comprehend electrical potential generation and explore possible sensing mechanisms translating the electrical message into cellular responses. A better understanding of the cellular voltage sensors and down-stream signalling mechanisms may lead to the development of novel treatments for cartilage regeneration.

7.
Comput Methods Programs Biomed ; 231: 107366, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36720186

RESUMO

BACKGROUND AND OBJECTIVE: Computer simulations of joint contact mechanics have great merit to improve our current understanding of articular ankle pathology. Owed to its computational simplicity, discrete element analysis (DEA) is an encouraging alternative to finite element analysis (FEA). However, previous DEA models lack subject-specific anatomy and may oversimplify the biomechanics of the ankle. The objective of this study was to develop and validate a personalized DEA framework that permits movement of the fibula and incorporates personalized cartilage thickness as well as ligamentous constraints. METHODS: A linear and non-linear DEA framework, representing cartilage as compressive springs, was established, verified, and validated. Three-dimensional (3D) bony ankle models were constructed from cadaveric lower limb CT scans imaged during application of weight (85 kg) and/or torque (10 Nm). These 3D models were used to generate cartilage thickness and ligament insertion sites based on a previously validated statistical shape model. Ligaments were modelled as non-linear tension-only springs. Validation of contact stress prediction was performed using a simple, axially constrained tibiotalar DEA model against an equivalent FEA model. Validation of ligamentous constraints compared the final position of the ankle mortise to that of the cadaver after application of torque and sequential ligament sectioning. Finally, a combined ligamentous-constraining DEA model was validated for predicted contact stress against an equivalent ligament-constraining FEA model. RESULTS: The linear and non-linear DEA model reproduced a mean articular contact stress within 0.36 MPa and 0.39 MPa of the FEA calculated stress, respectively. With respect to the ligamentous validation, the DEA ligament-balancing algorithm could reproduce the position of the distal fibula within the ankle mortise to within 0.97 mm of the experimental observed distal fibula. When combining the ligament-constraining and contact stress algorithm, DEA was able to reproduce a mean articular contact stress to within 0.50 MPa of the FEA calculated contact stress. CONCLUSION: The DEA framework presented herein offers a computationally efficient alternative to FEA for the prediction of contact stress in the ankle joint, manifesting its potential to enhance the mechanical understanding of articular ankle pathologies on both a patient-specific and population-wide level. The novelty of this model lies in its personalized nature, inclusion of the distal tibiofibular joint and the use of non-linear ligament balancing to maintain the physiological ankle joint articulation.


Assuntos
Articulação do Tornozelo , Ligamentos , Humanos , Estresse Mecânico , Torque , Fíbula
8.
Front Bioeng Biotechnol ; 11: 1055860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970632

RESUMO

Background and Objective: As in vivo measurements of knee joint contact forces remain challenging, computational musculoskeletal modeling has been popularized as an encouraging solution for non-invasive estimation of joint mechanical loading. Computational musculoskeletal modeling typically relies on laborious manual segmentation as it requires reliable osseous and soft tissue geometry. To improve on feasibility and accuracy of patient-specific geometry predictions, a generic computational approach that can easily be scaled, morphed and fitted to patient-specific knee joint anatomy is presented. Methods: A personalized prediction algorithm was established to derive soft tissue geometry of the knee, originating solely from skeletal anatomy. Based on a MRI dataset (n = 53), manual identification of soft-tissue anatomy and landmarks served as input for our model by use of geometric morphometrics. Topographic distance maps were generated for cartilage thickness predictions. Meniscal modeling relied on wrapping a triangular geometry with varying height and width from the anterior to the posterior root. Elastic mesh wrapping was applied for ligamentous and patellar tendon path modeling. Leave-one-out validation experiments were conducted for accuracy assessment. Results: The Root Mean Square Error (RMSE) for the cartilage layers of the medial tibial plateau, the lateral tibial plateau, the femur and the patella equaled respectively 0.32 mm (range 0.14-0.48), 0.35 mm (range 0.16-0.53), 0.39 mm (range 0.15-0.80) and 0.75 mm (range 0.16-1.11). Similarly, the RMSE equaled respectively 1.16 mm (range 0.99-1.59), 0.91 mm (0.75-1.33), 2.93 mm (range 1.85-4.66) and 2.04 mm (1.88-3.29), calculated over the course of the anterior cruciate ligament, posterior cruciate ligament, the medial and the lateral meniscus. Conclusion: A methodological workflow is presented for patient-specific, morphological knee joint modeling that avoids laborious segmentation. By allowing to accurately predict personalized geometry this method has the potential for generating large (virtual) sample sizes applicable for biomechanical research and improving personalized, computer-assisted medicine.

9.
Osteoarthritis Cartilage ; 20(7): 670-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22503910

RESUMO

OBJECTIVE: Hip labrum pathology has only begun to emerge as a significant source of groin pain in the last decade since the development of hip arthroscopy. Few data are available on the anatomy, histology and function of this structure. Moreover, no metabolic data exist at cellular level. The aim of this study was to characterize extracellular matrix (ECM) genes and pro-inflammatory mediators expressed by these cells. METHODS: Isolated human acetabular labrum cells were cultured in alginate beads for 10 days and additionally stimulated with interleukin (IL)-1 for 24 h. Gene expression levels and secretion of different ECM genes, enzymes and cytokines were examined by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) to assess the metabolic characteristics of labrum cells. Articular chondrocytes and meniscus cells served as controls. RESULTS: Labrum cells expressed high levels of COL1A1 and low levels of COL2A1, aggrecan and SOX-9 compared to chondrocytes. However, COL2A1 was more expressed by labrum cells than by meniscus cells. The expression of matrix metalloproteinase (MMP)-1/-2/-9, ADAMTS-4 and IL-6 was significantly higher in labrum cells than in chondrocytes. IL-1 suppressed the ECM gene expression levels of labrum cells, but increased the expression levels and release of MMP-1/-3/-9/-13 and ADAMTS-4 and IL-6 by these cells. Remarkably, MMP-9 was only significantly upregulated in acetabular labrum cells. CONCLUSIONS: The findings in this study demonstrated that the acetabular labrum is populated with unique highly active fibrochondrocyte-like cells. These cells are capable of expressing and releasing pro-inflammatory enzymes and cytokines and react to a pro-inflammatory stimulus. In this way, they contribute obviously to disturbed tissue function in hip labrum pathology.


Assuntos
Acetábulo/citologia , Acetábulo/metabolismo , Acetábulo/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Forma Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1/farmacologia , Masculino , Meniscos Tibiais/citologia , Meniscos Tibiais/metabolismo , Pessoa de Meia-Idade
10.
Comput Methods Programs Biomed ; 220: 106812, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489144

RESUMO

BACKGROUND AND OBJECTIVES: The most widespread statistical modeling technique is based on Principal Component Analysis (PCA). Although this approach has several appealing features, it remains hampered by its linearity. Principal Polynomial Analysis (PPA) can capture non-linearity in a sequential algorithm, while maintaining the interesting properties of PCA. PPA is, however, computationally expensive in handling shape surface data. To this end, we propose Principal Polynomial Shape Analysis (PPSA) as an adjusted approach for non-linear shape analyzes. The aim of this study was to assess PPSA's features, its model boundaries and its general applicability. METHODS: PCA and PPSA-based shape models were investigated on one verification and three model evaluation experiments. In the verification experiment, the estimated mean of the PCA and PPSA model on a data set of synthetic lower limbs of different lengths in different poses were compared to the real mean. Further, the PCA-based and PPSA shape models were tested for three challenging cases namely for shape model creation of gait marker data, for regression analysis on aging faces and for modeling pose variation in full body scans. For the latter, additionally a Fundamental Coordinate Model (FCM) and a PPSA model on Fundamental Coordinate(FC) space was created. The performances were evaluated based on model-based accuracy, generalization, compactness and specificity. RESULTS: In the verification experiment, the scaling error reduced from 75% to below 1% when employing PPSA instead of PCA for a training set with 180° angular variation. For the model evaluation experiments, the PPSA models described the data as accurate and generalized as the PCA-based shape models. The PPSA models were slightly more compact and specific (up to 30%) than the PCA-based models. In regression, PCA and PPSA-based parameterizations explained a similar amount of variation. Lastly, for the full body scans, applying PPSA to parameterizations improved the compactness and accuracy. CONCLUSIONS: PPSA describes the non-linear relationships between principal variations in a parameterized space. Compared to standard PCA-based shape models, capturing the non-linearity reduced the nonsense information in the shape components and improved the description of the data mean.


Assuntos
Algoritmos , Modelos Estatísticos , Análise de Componente Principal , Análise de Regressão
11.
Comput Methods Programs Biomed ; 218: 106701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35259673

RESUMO

BACKGROUND AND OBJECTIVE: Revealing the complexity behind subject-specific ankle joint mechanics requires simultaneous analysis of three-dimensional bony and soft-tissue structures. 3D musculoskeletal models have become pivotal in orthopedic treatment planning and biomechanical research. Since manual segmentation of these models is time-consuming and subject to manual errors, (semi-) automatic methods could improve the accuracy and enlarge the sample size of personalised 'in silico' biomechanical experiments and computer-assisted treatment planning. Therefore, our aim was to automatically predict ligament paths, cartilage topography and thickness in the ankle joint based on statistical shape modelling. METHODS: A personalised cartilage and ligamentous prediction algorithm was established using geometric morphometrics, based on an 'in-house' generated lower limb skeletal model (N = 542), tibiotalar cartilage (N = 60) and ankle ligament segmentations (N = 10). For cartilage, a population-averaged thickness map was determined by use of partial least-squares regression. Ligaments were wrapped around bony contours based on iterative shortest path calculation. Accuracy of ligament path and cartilage thickness prediction was quantified using leave-one-out experiments. The novel personalised thickness prediction was compared with a constant cartilage thickness of 1.50 mm by use of a paired sample T-test. RESULTS: Mean distance error of cartilage and ligament prediction was 0.12 mm (SD 0.04 mm) and 0.54 mm (SD 0.05 mm), respectively. No significant differences were found between the personalised thickness cartilage and segmented cartilage of the tibia (p = 0.73, CI [-1.60 .10-17, 1.13 .10-17]) and talus (p = 0.95, CI[ -1.35 .10-17, 1.28 .10-17]). For the constant thickness cartilage, a statistically significant difference was found in 89% and 92% of the tibial (p < 0.001, CI [0.51, 0.58]) and talar (p < 0.001, CI [0.33, 0.40]) cartilage area. CONCLUSIONS: In this study, we described a personalised prediction algorithm of cartilage and ligaments in the ankle joint. We were able to predict cartilage and main ankle ligaments with submillimeter accuracy. The proposed method has a high potential for generating large (virtual) sample sizes in biomechanical research and mitigates technological advances in computer-assisted orthopaedic surgery.


Assuntos
Cartilagem Articular , Tálus , Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Tíbia/diagnóstico por imagem
12.
Front Bioeng Biotechnol ; 10: 1042441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466354

RESUMO

Background: To date, the amount of cartilage loss is graded by means of discrete scoring systems on artificially divided regions of interest (ROI). However, optimal statistical comparison between and within populations requires anatomically standardized cartilage thickness assessment. Providing anatomical standardization relying on non-rigid registration, we aim to compare morphotypes of a healthy control cohort and virtual reconstructed twins of end-stage knee OA subjects to assess the shape-related knee OA risk and to evaluate possible correlations between phenotype and location of cartilage loss. Methods: Out of an anonymized dataset provided by the Medacta company (Medacta International SA, Castel S. Pietro, CH), 798 end-stage knee OA cases were extracted. Cartilage wear patterns were observed by computing joint space width. The three-dimensional joint space width data was translated into a two-dimensional pixel image, which served as the input for a principal polynomial autoencoder developed for non-linear encoding of wear patterns. Virtual healthy twin reconstruction enabled the investigation of the morphology-related risk for OA requiring joint arthroplasty. Results: The polynomial autoencoder revealed 4 dominant, orthogonal components, accounting for 94% of variance in the latent feature space. This could be interpreted as medial (54.8%), bicompartmental (25.2%) and lateral (9.1%) wear. Medial wear was subdivided into anteromedial (11.3%) and posteromedial (10.4%) wear. Pre-diseased limb geometry had a positive predictive value of 0.80 in the prediction of OA incidence (r 0.58, p < 0.001). Conclusion: An innovative methodological workflow is presented to correlate cartilage wear patterns with knee joint phenotype and to assess the distinct knee OA risk based on pre-diseased lower limb morphology. Confirming previous research, both alignment and joint geometry are of importance in knee OA disease onset and progression.

13.
Knee Surg Sports Traumatol Arthrosc ; 19(9): 1514-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21409469

RESUMO

PURPOSE: Determining the etiology of persistent groin pain after hip resurfacing arthroplasty (HRA) can be very challenging, even for the experienced surgeon. The purpose of the present study was to evaluate the use of hip arthroscopy as a diagnostic and therapeutic tool for the painful hip following resurfacing arthroplasty. METHODS: In the present paper, the indications for arthroscopy and the arthroscopic findings in 15 patients with persistent and incapacitating groin pain following HRA are described. In all patients, nonsurgical diagnostic investigations such as ultrasound and radiography, blood sample analysis, and technetium and leukocyte-labeled scanning were inconclusive so that a definite diagnosis could not be established. RESULTS: In seven patients, synovial biopsies were taken arthroscopically to rule out metal sensitivity, low-grade infection, or excessive metal wear. A definite diagnosis from histological evaluation could be made in 5 out of the 7 patients. Five patients were clinical suspicious of iliopsoas tendinitis. Diagnostic arthroscopy and histological analysis of the synovial samples provided an alternative diagnosis in 2 out of the 5 patients. Three patients underwent femoral osteoplasty for impingement due to reduced anterior femoral offset with subsequent symptom relief. CONCLUSION: Hip arthroscopy after HRA is a valuable diagnostic alternative to open procedures in case of persistent groin pain, when noninvasive investigations fail to explain the symptoms. Multiple tissue samples should always be taken for histological examination and culture, as they are crucial in the final identification of the origin of the complaints.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroscopia/métodos , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/cirurgia , Adulto , Idoso , Artralgia/etiologia , Artralgia/cirurgia , Artroplastia/métodos , Artroplastia de Quadril/métodos , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Recuperação de Função Fisiológica , Reoperação/métodos , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Resultado do Tratamento
14.
J Hip Preserv Surg ; 7(4): 677-687, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34548927

RESUMO

The risk for ischiofemoral impingement has been mainly related to a reduced ischiofemoral distance and morphological variance of the femur. From an evolutionary perspective, however, there are strong arguments that the condition may also be related to sexual dimorphism of the pelvis. We, therefore, investigated the impact of gender-specific differences in anatomy of the ischiofemoral space on the ischiofemoral clearance, during static and dynamic conditions. A random sampling Monte-Carlo experiment was performed to investigate ischiofemoral clearance during stance and gait in a large (n = 40 000) virtual study population, while using gender-specific kinematics. Subsequently, a validated gender-specific geometric morphometric analysis of the hip was performed and correlations between overall hip morphology (statistical shape analysis) and standard discrete measures (conventional metric approach) with the ischiofemoral distance were evaluated. The available ischiofemoral space is indeed highly sexually dimorphic and related primarily to differences in the pelvic anatomy. The mean ischiofemoral distance was 22.2 ± 4.3 mm in the females and 29.1 ± 4.1 mm in the males and this difference was statistically significant (P < 0.001). Additionally, the ischiofemoral distance was observed to be a dynamic measure, and smallest during femoral extension, and this in turn explains the clinical sign of pain in extension during long stride walking. In conclusion, the presence of a reduced ischiofemroal distance and related risk to develop a clinical syndrome of ischiofemoral impingement is strongly dominated by evolutionary effects in sexual dimorphism of the pelvis. This should be considered when female patients present with posterior thigh/buttock pain, particularly if worsened by extension. Controlled laboratory study.

15.
Bone Rep ; 12: 100243, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32181268

RESUMO

Given sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them.

16.
Clin Biomech (Bristol, Avon) ; 70: 186-191, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31526958

RESUMO

BACKGROUND: The accurate estimation of a muscle's line of action is a fundamental requirement in computational modelling. We present a novel anatomical muscle wrapping technique and demonstrate its clinical use on the evaluation of the Psoas muscle mechanics in hip arthroplasty. METHODS: A volume preserving, spring model to parameterize muscle anatomy changes during motion is presented. Validation was performed by a CT scan of a cadaver model in multiple positions. The predicted psoas musculotendinous path was compared with the actual imaging findings. In a second stage, psoas kinetics were compared between a conventional versus a resurfacing hip arthroplasty during gait. FINDINGS: Anatomy prediction error was found to be 2.12 mm on average (SD 1.34 mm). When applied to psoas mechanics during walking, the muscle was found to wrap predominantly around the femoral head providing a biomechanically efficient and nearly constant moment arm for flexion during the entire gait cycle. However, this advantage was found to be lost in small diameter hip arthroplasty designs resulting in an important mechanical disadvantage. The moment arm for flexion, was on average 36% (SD 0.03%) lower in the small diameter conventional hip arthroplasty as compared to the large diameter head of the hip resurfacing and this difference was highly significant. (p < 0.001). INTERPRETATION: Despite the shortcomings of an "in silico" and cadaveric study, our findings are in accordance with previous clinical and gait studies. Furthermore, the findings are strongly in favour of large diameter implant designs, warranting their further development and optimisation.


Assuntos
Artroplastia de Quadril/instrumentação , Cabeça do Fêmur/cirurgia , Prótese de Quadril , Músculos Psoas/cirurgia , Idoso , Artroplastia de Quadril/métodos , Cadáver , Simulação por Computador , Feminino , Marcha , Articulação do Quadril/cirurgia , Humanos , Músculos Psoas/anatomia & histologia , Músculos Psoas/fisiologia , Amplitude de Movimento Articular , Tendões/fisiologia , Tomografia Computadorizada por Raios X
17.
Artigo em Inglês | MEDLINE | ID: mdl-31737620

RESUMO

Purpose: Statistical shape modeling provides a powerful tool for describing and analyzing human anatomy. By linearly combining the variance of the shape of a population of a given anatomical entity, statistical shape models (SSMs) identify its main modes of variation and may approximate the total variance of that population to a selected threshold, while reducing its dimensionality. Even though SSMs have been used for over two decades, they lack in characterization of their goodness of prediction, in particular when defining whether these models are actually representative for a given population. Methods: The current paper presents, to the authors' knowledge, the most extent lower limb anatomy shape model considering the pelvis, femur, patella, tibia, fibula, talus, and calcaneum to date. The present study includes the segmented training shapes (n = 542) obtained from 271 lower limb CT scans. The different models were evaluated in terms of accuracy, compactness, generalizability as well as specificity. Results: The size of training samples needed in each model so that it can be considered population covering was estimated to approximate around 200 samples, based on the generalizability properties of the different models. Simultaneously differences in gender and patterns in left-right asymmetry were identified and characterized. Size was found to be the most pronounced sexual discriminator whereas intra-individual variations in asymmetry were most pronounced at the insertion site of muscles. Conclusion: For models aimed at population covering descriptive studies, the number of training samples required should amount a sizeable 200 samples. The geometric morphometric method for sex discrimination scored excellent, however, it did not largely outperformed traditional methods based on discrete measures.

18.
Comput Methods Programs Biomed ; 92(1): 8-19, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18606476

RESUMO

In musculoskeletal modelling, many muscles cannot be represented as straight lines from origin to insertion because the bony and musculotendinous morphology of neighboring structures causes them to wrap. The majority of these passive structures can be adequately described as simple geometric shapes such as spheres and cylinders. Techniques for describing smooth muscle paths around multiple obstacles have been developed for modelling use. Until now obstacle-set methods have combined the path of single structures. This does not analytically define the shortest smooth path around multiple objects. When a sphere is included in a multiple-object wrapping algorithm, muscle paths around that sphere are restricted to a bundle of planes containing the sphere center. This assumed restriction can compromise the iterative process for finding the true shortest muscle path that satisfies all restrictions of a smooth path. This can cause model instability. The new method involves the determination of the shortest smooth muscle path in a spherical and cylindrical wrapping algorithm. A typical example is musculoskeletal modelling of the upper limb, where the muscle fibers have to wrap over this combination of obstacles.


Assuntos
Modelos Anatômicos , Modelos Biológicos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Articulação do Ombro/anatomia & histologia , Articulação do Ombro/fisiologia , Extremidade Superior/anatomia & histologia , Extremidade Superior/fisiologia , Algoritmos , Simulação por Computador , Humanos
19.
Acta Chir Belg ; 107(1): 67-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17405603

RESUMO

Cysts of the thoracic duct are uncommon entities that can occur in the abdominal segment, the cisterna chyli, the thoracic segment and the cervical segment of the thoracic duct. The rarest presentation is in the cervical segment, with only seventeen cases reported in English literature. The diagnosis can be made by puncture and with the use of computed tomography or ultrasonography. The cystic fluid always contains an excess of T-lymphocytes and triglycerides. Except for two cases, all reported cervical thoracic duct cysts were surgically treated by excision and ligation of the lymphatics connected to the cyst. We present a case of a successful non-operative treatment of a cervical thoracic duct cyst that was resolved by repeated aspiration and dietary changes only.


Assuntos
Cisto Mediastínico/terapia , Punções , Ducto Torácico/diagnóstico por imagem , Triglicerídeos/administração & dosagem , Idoso de 80 Anos ou mais , Feminino , Humanos , Cisto Mediastínico/diagnóstico , Radiografia
20.
Appl Ergon ; 63: 99-105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502412

RESUMO

Sitting is part of our daily work and leisure activities and can be performed in different configurations. To date, the impact of different sitting configurations on hip joint loading has not been studied. We therefore evaluated the hip joint reaction force (HJRF) and hip flexion angle in a virtual representative male Caucasian population by means of musculoskeletal modelling of three distinct sitting configurations: a simple chair, a car seat and a kneeling chair configuration. The observed median HJRF in relation to body weight and hip flexion angle, respectively, was 22.3% body weight (%BW) and 63° for the simple chair, 22.5%BW and 79° for the car seat and 8.7%BW and 50° for the kneeling chair. Even though the absolute values of HJRF are low compared to the forces generated during dynamic activities, a relative reduction of over 50% in HJRF was observed in the kneeling chair configuration. Second, the hip flexion angles were both in the kneeling chair (-29°) and simple chair configuration (-16°) lower compared to the car seat and, as such, did not reach the threshold value for femoroacetabular conflict. In conclusion, the kneeling chair appears to hold the greatest potential as an ergonomic sitting configuration for the hip joint.


Assuntos
Articulação do Quadril/fisiologia , Postura/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA