Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(2): 020402, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004024

RESUMO

Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a general construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. Apart from their theoretical relevance, our inequalities offer two main advantages from an experimental viewpoint: (i) they present a significant reduction of the experimental effort needed to violate them, as the number of correlations they contain scales only linearly with the number of observers; (ii) numerical results indicate that the self-testing statements for graph states derived from our inequalities tolerate noise levels that are met by present experimental data. We also discuss possible generalizations of our approach to entangled states whose stabilizers are not tensor products of Pauli matrices. Our work introduces a promising approach for the certification of complex many-body quantum states.

2.
Phys Rev Lett ; 123(10): 100507, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573313

RESUMO

We consider the characterization of entanglement depth in a quantum many-body system from the device-independent perspective; that is, we aim at certifying how many particles are genuinely entangled without relying on assumptions on the system itself nor on the measurements performed. We obtain device-independent witnesses of entanglement depth (DIWEDs) using the Bell inequalities introduced in [J. Tura et al., Science 344, 1256 (2014)SCIEAS0036-807510.1126/science.1247715] and compute their k-producibility bounds. To this end, we exploit two complementary methods: first, a variational one, yielding a possibly optimal k-producible state; second, a certificate of optimality via a semidefinite program, based on a relaxation of the quantum marginal problem. Numerical results suggest a clear pattern on k-producible bounds for large system sizes, which we then tackle analytically in the thermodynamic limit. Contrary to existing DIWEDs, the ones we present here can be effectively measured by accessing only collective measurements and second moments thereof. These technical requirements are met in current experiments, which have already been performed in the context of detecting Bell correlations in quantum many-body systems of 5×10^{2}-5×10^{5} atoms.

3.
Phys Rev Lett ; 115(3): 030404, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230773

RESUMO

Understanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that these two phenomena are inequivalent, as there exist entangled states of two parties that do not violate any Bell inequality. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such a relation in multipartite systems. We provide a general construction of genuinely multipartite entangled states that do not display genuinely multipartite nonlocality, thus proving that entanglement and nonlocality are inequivalent for any number of parties.

4.
Phys Rev Lett ; 107(7): 070401, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902377

RESUMO

The strength of classical correlations is subject to certain constraints, commonly known as Bell inequalities. Violation of these inequalities is the manifestation of nonlocality-displayed, in particular, by quantum mechanics, meaning that quantum mechanics can outperform classical physics at tasks associated with such Bell inequalities. Interestingly, however, there exist situations in which this is not the case. We associate an intriguing class of bound entangled states, constructed from unextendable product bases with a wide family of tasks, for which (i) quantum correlations do not outperform the classical ones but (ii) there exist supraquantum nonsignaling correlations that do provide an advantage.

5.
Phys Rev Lett ; 104(14): 140404, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481924

RESUMO

We provide a unified framework for nonsignalling quantum and classical multipartite correlations, allowing all to be written as the trace of some local (quantum) measurements multiplied by an operator. The properties of this operator define the corresponding set of correlations. We then show that if the theory is such that all local quantum measurements are possible, one obtains the correlations corresponding to the extension of Gleason's Theorem to multipartite systems. Such correlations coincide with the quantum ones for one and two parties, but we prove the existence of a gap for three or more parties.

6.
Science ; 344(6189): 1256-8, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24926014

RESUMO

Intensive studies of entanglement properties have proven essential for our understanding of quantum many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems because the available multipartite Bell inequalities involve correlations among many particles, which are difficult to access experimentally. We constructed multipartite Bell inequalities that involve only two-body correlations and show how they reveal the nonlocality in many-body systems relevant for nuclear and atomic physics. Our inequalities are violated by any number of parties and can be tested by measuring total spin components, opening the way to the experimental detection of many-body nonlocality, for instance with atomic ensembles.

7.
Nat Commun ; 4: 2263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948952

RESUMO

In recent years, the use of information principles to understand quantum correlations has been very successful. Unfortunately, all principles considered so far have a bipartite formulation, but intrinsically multipartite principles, yet to be discovered, are necessary for reproducing quantum correlations. Here we introduce local orthogonality, an intrinsically multipartite principle stating that events involving different outcomes of the same local measurement must be exclusive or orthogonal. We prove that it is equivalent to no-signalling in the bipartite scenario but more restrictive for more than two parties. By exploiting this non-equivalence, it is then demonstrated that some bipartite supra-quantum correlations do violate the local orthogonality when distributed among several parties. Finally, we show how its multipartite character allows revealing the non-quantumness of correlations for which any bipartite principle fails. We believe that local orthogonality is a crucial ingredient for understanding no-signalling and quantum correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA