Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
2.
Global Biogeochem Cycles ; 36(3): e2021GB007061, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865755

RESUMO

The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.

3.
New Phytol ; 231(4): 1353-1358, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008201

RESUMO

Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e. the phyllosphere community) may help us to better understand HFA. We investigated the occurrence of HFA in the presence vs absence of phyllosphere communities and found that HFA effects were smaller when phyllosphere communities were removed. We propose that priority effects and interactions between phyllosphere and soil organisms can help explain the positive effects of the phyllosphere at home, and suggest a path forward for further investigation.


Assuntos
Microbiota , Solo , Ecossistema , Folhas de Planta , Plantas , Microbiologia do Solo
4.
Oecologia ; 187(1): 219-231, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574579

RESUMO

The importance of competition in low productive habitats is still debated. Studies which simultaneously evaluate preemption of resources and consequences for population dynamics are needed for a comprehensive view of competitive outcomes. We cultivated two emblematic species of European heathlands (Calluna vulgaris and Molinia caerulea) in a nursery for 2 years at two fertility levels, reproducing the productivity gradient found in phosphorus (P)-depleted heathlands in southwest France. The second year, we planted Ulex europaeus seedlings, a ubiquitous heathland species, under the cover of the two species to evaluate its ability to regenerate. Half of the seedlings were placed in tubes for exclusion of competitor roots. We measured the development of the competitors aboveground and belowground and their interception of resources (light, water, inorganic P). Ulex seedlings' growth and survival were also measured. Our results on resources interception were consistent with species distribution in heathlands. Molinia, which dominates rich heathlands, was the strongest competitor for light and water in the rich soil. Calluna, which dominates poor heathlands, increased its root allocation in the poor soil, decreasing water and inorganic P availability. However, the impact of total competition and root competition on Ulex seedlings decreased in the poor soil. Other mechanisms, especially decrease of water stress under neighbouring plant cover, appeared to have more influence on the seedlings' response. We found no formal contradiction between Tilman and Grime's theories. Root competition has a primary role in acquisition of soil resources in poor habitats. However, the importance of competition decreases with decreasing fertility.


Assuntos
Poaceae , Solo , Ecossistema , França , Plântula
5.
Glob Chang Biol ; 23(9): 3808-3824, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28317232

RESUMO

Because the capability of terrestrial ecosystems to fix carbon is constrained by nutrient availability, understanding how nutrients limit plant growth is a key contemporary question. However, what drives nutrient limitations at global scale remains to be clarified. Using global data on plant growth, plant nutritive status, and soil fertility, we investigated to which extent soil parent materials explain nutrient limitations. We found that N limitation was not linked to soil parent materials, but was best explained by climate: ecosystems under harsh (i.e., cold and or dry) climates were more N-limited than ecosystems under more favourable climates. Contrary to N limitation, P limitation was not driven by climate, but by soil parent materials. The influence of soil parent materials was the result of the tight link between actual P pools of soils and physical-chemical properties (acidity, P richness) of soil parent materials. Some other ground-related factors (i.e., soil weathering stage, landform) had a noticeable influence on P limitation, but their role appeared to be relatively smaller than that of geology. The relative importance of N limitation versus P limitation was explained by a combination of climate and soil parent material: at global scale, N limitation became prominent with increasing climatic constraints, but this global trend was modulated at lower scales by the effect of parent materials on P limitation, particularly under climates favourable to biological activity. As compared with soil parent materials, atmospheric deposition had only a weak influence on the global distribution of actual nutrient limitation. Our work advances our understanding of the distribution of nutrient limitation at global scale. In particular, it stresses the need to take soil parent materials into account when investigating plant growth response to environment changes.


Assuntos
Ecossistema , Fósforo/química , Desenvolvimento Vegetal , Solo/química , Nitrogênio
6.
Glob Chang Biol ; 23(8): 3418-3432, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28067005

RESUMO

Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB ), a proxy of the pool involved in plant nutrition and the total soil P (PTOT ). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB . When the spatial variability was computed between grid cells at half-degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale.


Assuntos
Agricultura , Fósforo/química , Solo/química , Produtos Agrícolas , Plantas
7.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167392

RESUMO

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

8.
Oecologia ; 169(1): 221-34, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22120703

RESUMO

Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest ecosystem development. Here, we describe the redistributions of the P pools in a four-decadal chronosequence of post-agricultural common oak (Quercus robur L.) forests in Belgium and Denmark. The aim was to assess whether forest age causes a repartitioning of P throughout the various soil P pools (labile P, slowly cycling P and occluded P); in particular, we addressed the time-related alterations in the inorganic versus organic P fractions. In less than 40 years of oak forest development, significant redistributions have occurred between different P fractions. While both the labile and the slowly cycling inorganic P fractions significantly decreased with forest age, the organic fractions significantly increased. The labile P pool (inorganic + organic), which is considered to be the pool of P most likely to contribute to plant-available P, significantly decreased with forest age (from >20 to <10% of total P), except in the 0-5 cm of topsoil, where labile P remained persistently high. The shift from inorganic to organic P and the shifts between the different inorganic P fractions are driven by biological processes and also by physicochemical changes related to forest development. It is concluded that the organic labile P fraction, which is readily mineralisable, should be taken into account when studying the bioavailable P pool in forest ecosystems.


Assuntos
Fósforo/análise , Quercus/metabolismo , Solo/química , Bélgica , Carbono/análise , Carbono/metabolismo , Dinamarca , Concentração de Íons de Hidrogênio , Fósforo/metabolismo , Raízes de Plantas , Fatores de Tempo , Árvores/metabolismo
9.
Nat Commun ; 13(1): 1097, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233020

RESUMO

Forests constitute important ecosystems in the global carbon cycle. However, how trees and environmental conditions interact to determine the amount of organic carbon stored in forest soils is a hotly debated subject. In particular, how tree species influence soil organic carbon (SOC) remains unclear. Based on a global compilation of data, we show that functional traits of trees and forest standing biomass explain half of the local variability in forest SOC. The effects of functional traits on SOC depended on the climatic and soil conditions with the strongest effect observed under boreal climate and on acidic, poor, coarse-textured soils. Mixing tree species in forests also favours the storage of SOC, provided that a biomass over-yielding occurs in mixed forests. We propose that the forest carbon sink can be optimised by (i) increasing standing biomass, (ii) increasing forest species richness, and (iii) choosing forest composition based on tree functional traits according to the local conditions.


Assuntos
Carbono , Árvores , Biomassa , Sequestro de Carbono , Ecossistema , Florestas , Solo
10.
Sci Total Environ ; 850: 157907, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985599

RESUMO

The objective of this study was to assess the effects of different intensities of biomass harvesting, and the possible effects of compensation methods, on forest functioning. To do so, we carried out a split-plot experiment (SW France) crossing four different intensities of biomass harvesting (Stem-Only Harvest [SOH], Aboveground Additional Harvest [AAH], Belowground Additional Harvest [BAH], and Whole-Tree Harvest [WTH]) and three compensation methods (control [C], wood ash application [A] and phosphorus fertilisation [P]). The experimental treatments were followed by the plantation of pines (Pinus pinaster). The environmental consequences of treatments on soil and vegetation were evaluated 11 years after the tree plantation. Despite their low additional biomass exports (+10 % for AAH to +34 % for WTH), the non-conventional harvest practices exported much higher quantities of nutrients than the conventional SOH technique (+145 % of exported N in WTH). Additional biomass harvests impacted the soil organic matter content, with negative effects on P-organic, soil cation exchange capacity, exchangeable Ca, and most extractible nutrients. However, tree nutritional status was improved by P-fertiliser or wood ash. We observed a positive effect of wood ash application on soil pH and nutrient content but, like additional harvests, wood ash application decreased the pool of soil organic carbon (~10 %). Overall, the experiment showed that exporting more forest biomass due to the additional harvesting of biomass had negative consequences on the ecosystem biogeochemistry. Additional harvests have impoverished the soil, and decreased the soil organic carbon content. Importantly, applying nutrients as fertiliser or wood ash did not compensate for all the negative impacts of biomass exports and the method of wood ash recycling in forests could even decrease the soil organic carbon.


Assuntos
Pinus , Solo , Biomassa , Carbono , Ecossistema , Fertilização , Fertilizantes , Florestas , Fósforo , Solo/química , Árvores/química
11.
Sci Total Environ ; 661: 613-629, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682612

RESUMO

During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils, groundwater, and at the groundwater-surface water interface as well as in stream channels and stream sediments. However, processes and factors controlling these transfers and transformations are not well constrained, particularly with respect to land use effect. We compared C and IN concentrations in shallow groundwater and first-order streams of a sandy lowland catchment dominated by two types of land use: pine forest and maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic conditions all-year round as a result of higher evapotranspiration and better lateral drainage that decreased the water table below the organic-rich soil horizon, prevented the leaching of soil-generated dissolved organic carbon (DOC) in groundwater, and thus limited consumption of dissolved oxygen (O2). In crop groundwater, oxic conditions inhibited denitrification and methanogenesis resulting in high nitrate (NO3-; on average 1140 ±â€¯485 µmol L-1) and low methane (CH4; 40 ±â€¯25 nmol L-1) concentrations. Conversely, anoxic conditions in forest groundwater led to lower NO3- (25 ±â€¯40 µmol L-1) and higher CH4 (1770 ±â€¯1830 nmol L-1) concentrations. The partial pressure of carbon dioxide (pCO2; 30,650 ±â€¯11,590 ppmv) in crop groundwater was significantly lower than in forest groundwater (50,630 ±â€¯26,070 ppmv), and was apparently caused by the deeper water table delaying downward diffusion of soil CO2 to the water table. In contrast, pCO2 was not significantly different in crop (4480 ±â€¯2680 ppmv) and forest (4900 ±â€¯4500 ppmv) streams, suggesting faster degassing in forest streams resulting from greater water turbulence. Although NO3-concentrations indicated that denitrification occurred in riparian-forest groundwater, crop streams nevertheless exhibited important signs of spring and summer eutrophication such as the development of macrophytes. Stream eutrophication favored development of anaerobic conditions in crop stream sediments, as evidenced by increased ammonia (NH4+) and CH4 in stream waters and concomitant decreased in NO3- concentrations as a result of sediment denitrification. In crop streams, dredging and erosion of streambed sediments during winter sustained high concentration of particulate organic C, NH4+ and CH4. In forest streams, dissolved iron (Fe2+), NH4+ and CH4 were negatively correlated with O2 reflecting the gradual oxygenation of stream water and associated oxidations of Fe2+, NH4+ and CH4. The results overall showed that forest groundwater behaved as source of CO2 and CH4 to streams, the intensity depending on the hydrological connectivity among soils, groundwater, and streams. CH4 production was prevented in cropland in soils and groundwater, however crop groundwater acted as a source of CO2 to streams (but less so than forest groundwater). Conversely, in streams, pCO2 was not significantly affected by land use while CH4 production was enhanced by cropland. At the catchment scale, this study found substantial biogeochemical heterogeneity in C and IN concentrations between forest and crop waters, demonstrating the importance of including the full vegetation-groundwater-stream continuum when estimating land-water fluxes of C (and nitrogen) and attempting to understand their spatial and temporal dynamics.


Assuntos
Carbono/análise , Monitoramento Ambiental , Fazendas , Florestas , Água Subterrânea/análise , Rios , Embriófitas/fisiologia , França , Pinus/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
12.
Sci Total Environ ; 640-641: 849-861, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29879671

RESUMO

A dune forest in SW France composed of maritime pines was irrigated with treated wastewater for a decade in an experiment (including irrigated plots versus control plots) to evaluate the environmental impact of applying wastewater on the water table, soil properties, and plants. The amount of treated wastewater (1921 mm yr-1) applied was twice the annual precipitation. Nutrient inputs were also very high, particularly nitrogen (N: 539 kg-N ha-1 yr-1), phosphorus (P: 102 kg-P ha-1 yr-1), and calcium (Ca: 577 kg-Ca ha-1 yr-1). Irrigation caused a rise in the water table, and increased its sodium (Na), NO3-, potassium (K), and calcium concentrations. Soil properties were affected by irrigation at least down to a depth of 1.2 m. After eight years of irrigation, soil pH had increased by 1.4 units, and soil available P content (POlsen) increased nearly 8-fold. In the short-term (i.e. 1-3 years), irrigation with treated wastewater improved growth, standing biomass, and the nutritional status of the vegetation. But tree dieback started in the fourth year of irrigation and worsened until the end of the monitoring period when almost all the irrigated trees were dead or moribund. The understory composition was drastically modified by irrigation, with an increase in α-biodiversity and in the biomass of herbaceous species, and a reduction in woody species abundance. The factor that best explained tree dieback was manganese nutrition (Mn): (i) the Mn content of the tree foliage was negatively affected by irrigation and below the deficiency values reported for pine species, and (ii) soil available Mn (CaCl2 extraction) decreased by half in the topsoil layer. Manganese deficiency was probably the consequence of the increase in soil pH, which in turn reduced soil Mn availability. Tree dieback was not related to either to a macronutrient deficiency or to toxicity caused by a trace element.


Assuntos
Biodegradação Ambiental , Florestas , Eliminação de Resíduos Líquidos/métodos , Ecossistema , França , Solo , Água
13.
Sci Rep ; 5: 15991, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530409

RESUMO

Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.


Assuntos
Biomassa , Sequestro de Carbono/fisiologia , Monitoramento Ambiental , Agricultura Florestal/métodos , Solo/química , Carbono/química , Ciclo do Carbono/fisiologia , Ecossistema , Florestas , Árvores/química
14.
PLoS One ; 10(6): e0130886, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098877

RESUMO

The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat).


Assuntos
Fabaceae/crescimento & desenvolvimento , Ecologia , Ecossistema , França , Germinação/fisiologia , Fósforo , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Solo , Especificidade da Espécie , Estresse Fisiológico/fisiologia , Água
15.
Biol Rev Camb Philos Soc ; 90(2): 444-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24916992

RESUMO

It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from field studies does not show any obvious trend. Further research is required to clarify if accumulation of carbon in soils (i.e. forest floor + mineral soil) is different between the two types of trees. Production of belowground dead organic matter appears to be of similar magnitude in DA and EG forests, and root decomposition rate lower under EGs than DAs. However there are some discrepancies and still are insufficient data about belowground pools and processes that require further research. Relatively larger amounts of nutrients enter the soil-plant biogeochemical cycle under the influence of EGs than DAs, but recycling of nutrients appears to be slightly enhanced by DAs. Understanding the mechanisms underlying forest ecosystem functioning is essential to predicting the consequences of the expected tree species migration under global change. This knowledge can also be used as a mitigation tool regarding carbon sequestration or management of surface waters because the type of tree species affects forest growth, carbon, water and nutrient cycling.


Assuntos
Clima , Cycadopsida/fisiologia , Florestas , Magnoliopsida/fisiologia , Biomassa , Temperatura
16.
Sci Rep ; 5: 8280, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655192

RESUMO

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

17.
Oecologia ; 153(3): 663-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17629749

RESUMO

Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow) deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha(-1) year(-1)), lower NH(4)(+) mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions with high atmospheric N pollution (>10 kg N ha(-1) year(-1)), the opposite could be concluded. The higher the open field deposition of NH(4)(+), the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be concluded that canopy exchange of K(+), Ca(2+) and Mg(2+) is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests is reflected in a higher soil seepage flux of NO(3)(-), SO(4)(2-), K(+), Ca(2+), Mg(2+) and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall (+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO(3)(-) and SO(4)(2-) and accompanying cations K(+), Ca(2+), Mg(2+) and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to the deciduous forest type.


Assuntos
Ecossistema , Chuva , Árvores , Água/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA