Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
2.
Cell ; 175(5): 1418-1429.e9, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454649

RESUMO

We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.


Assuntos
Ferro/metabolismo , Metaloproteínas/metabolismo , Metformina/farmacologia , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Teste de Complementação Genética , Humanos , Metaloproteínas/genética , Saccharomyces cerevisiae/genética
3.
Nat Chem Biol ; 19(8): 951-961, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248413

RESUMO

Nutritional codependence (syntrophy) has underexplored potential to improve biotechnological processes by using cooperating cell types. So far, design of yeast syntrophic communities has required extensive genetic manipulation, as the co-inoculation of most eukaryotic microbial auxotrophs does not result in cooperative growth. Here we employ high-throughput phenotypic screening to systematically test pairwise combinations of auxotrophic Saccharomyces cerevisiae deletion mutants. Although most coculture pairs do not enter syntrophic growth, we identify 49 pairs that spontaneously form syntrophic, synergistic communities. We characterized the stability and growth dynamics of nine cocultures and demonstrated that a pair of tryptophan auxotrophs grow by exchanging a pathway intermediate rather than end products. We then introduced a malonic semialdehyde biosynthesis pathway split between different pairs of auxotrophs, which resulted in increased production. Our results report the spontaneous formation of stable syntrophy in S. cerevisiae auxotrophs and illustrate the biotechnological potential of dividing labor in a cooperating intraspecies community.


Assuntos
Biotecnologia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Diabet Med ; 39(5): e14741, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34773301

RESUMO

AIMS: Several commercial and open-source automated insulin dosing (AID) systems have recently been developed and are now used by an increasing number of people with diabetes (PwD). This systematic review explored the current status of real-world evidence on the latest available AID systems in helping to understand their safety and effectiveness. METHODS: A systematic review of real-world studies on the effect of commercial and open-source AID system use on clinical outcomes was conducted employing a devised protocol (PROSPERO ID 257354). RESULTS: Of 441 initially identified studies, 21 published 2018-2021 were included: 12 for Medtronic 670G; one for Tandem Control-IQ; one for Diabeloop DBLG1; two for AndroidAPS; one for OpenAPS; one for Loop; three comparing various types of AID systems. These studies found that several types of AID systems improve Time-in-Range and haemoglobin A1c (HbA1c ) with minimal concerns around severe hypoglycaemia. These improvements were observed in open-source and commercially developed AID systems alike. CONCLUSIONS: Commercially developed and open-source AID systems represent effective and safe treatment options for PwD of several age groups and genders. Alongside evidence from randomized clinical trials, real-world studies on AID systems and their effects on glycaemic outcomes are a helpful method for evaluating their safety and effectiveness.


Assuntos
Diabetes Mellitus Tipo 1 , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Masculino
5.
Nat Biomed Eng ; 8(3): 233-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37474612

RESUMO

Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.


Assuntos
COVID-19 , Glicopeptídeos , Humanos , Espectrometria de Massas , Glicosilação , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Íons
6.
Nat Microbiol ; 8(3): 441-454, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797484

RESUMO

Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.


Assuntos
Aminoácidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Marcação por Isótopo
7.
Curr Opin Genet Dev ; 77: 101987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183585

RESUMO

Metal ions are potent catalysts and have been available for cellular biochemistry at all stages of evolution. Growing evidence suggests that metal catalysis was critical for the origin of the very first metabolic reactions. With approximately 80% of modern metabolic pathways being dependent on metal ions, metallocatalysis and homeostasis continue to be essential for intracellular metabolic networks and physiology. However, the genetic network that controls metal ion homeostasis and the impact of metal availability on metabolism is poorly understood. Here, we review recent work on gene and protein evolution relevant for better understanding metal ion biology and its role in metabolism. We highlight the importance of analysing the origin and evolution of enzyme catalysis in the context of catalytically relevant metal ions, summarise unanswered questions essential for developing a comprehensive understanding of metal ion homeostasis and advocate for the consideration of metal ion properties and availability in the design and directed evolution of novel enzymes and pathways.


Assuntos
Redes Reguladoras de Genes , Metais , Íons/química , Metais/química , Metais/metabolismo , Homeostase/genética , Catálise
8.
Nat Metab ; 3(11): 1521-1535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799698

RESUMO

Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.


Assuntos
Metabolismo Energético , Genoma Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Leveduras/genética , Leveduras/metabolismo , Aminoácidos/metabolismo , Biomassa , Proliferação de Células , Ciclo do Ácido Cítrico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Potencial da Membrana Mitocondrial , Mutação , Fenótipo , Relação Estrutura-Atividade
9.
Cell Syst ; 12(8): 780-794.e7, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34139154

RESUMO

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.


Assuntos
Biomarcadores/análise , COVID-19/patologia , Progressão da Doença , Proteoma/fisiologia , Fatores Etários , Contagem de Células Sanguíneas , Gasometria , Ativação Enzimática , Humanos , Inflamação/patologia , Aprendizado de Máquina , Prognóstico , Proteômica , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA