RESUMO
SignificancePhysical and chemical properties of individual atmospheric particles determine their climate impacts. Hygroscopic inorganic salt particles mixed with trace amounts of organic material are predicted to be liquid under typical tropospheric conditions in the summertime Arctic. Yet, we unexpectedly observed a significant concentration of solid particles composed of ammonium sulfate with an organic coating under conditions of high relative humidity and low temperature. These particle properties are consistent with marine biogenic-derived new particle formation and growth, with particle collision hypothesized to result in the solid phase. This particle source is predicted to have increasing relevance in the context of declining Arctic sea ice and increasing open water, with impacts on clouds, and therefore climate.
RESUMO
Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.
Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-BaseRESUMO
Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).
Assuntos
Butadienos , Estresse Oxidativo , Humanos , Idoso , Espécies Reativas de Oxigênio , Oxirredução , Butadienos/toxicidadeRESUMO
Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 µg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 µm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 µm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 µm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.
Assuntos
Cianobactérias , Proliferação Nociva de Algas , Humanos , Microcistinas/análise , Toxinas de Cianobactérias , Lagos/análise , Lagos/microbiologia , Aerossóis , Água , Atmosfera/análiseRESUMO
The phase (solid, semisolid, or liquid) of atmospheric aerosols is central to their ability to take up water or undergo heterogeneous reactions. In recent years, the unexpected prevalence of viscous organic particles has been shown through field measurements and global atmospheric modeling. The aerosol phase has been predicted using glass transition temperatures (Tg), which were estimated based on molecular weight, oxygen:carbon ratio, and chemical formulae of organic species present in atmospheric particles via studies of bulk materials. However, at the most important sizes for cloud nucleation (â¼50-500 nm), particles are complex mixtures of numerous organic species, inorganic salts, and water with substantial particle-to-particle variability. To date, direct measurements of Tg have not been feasible for individual atmospheric particles. Herein, nanothermal analysis (NanoTA), which uses a resistively heated atomic force microscopy (AFM) probe, is combined with AFM photothermal infrared (AFM-PTIR) spectroscopy to determine the Tg and composition of individual particles down to 76 nm in diameter at ambient temperature and pressure. Laboratory-generated proxies for organic aerosol (sucrose, ouabain, raffinose, and maltoheptaose) had similar Tg values to bulk Tg values measured with differential scanning calorimetry (DSC) and the Tg predictions used in atmospheric models. Laboratory-generated phase-separated particles and ambient particles were analyzed with NanoTA + AFM-PTIR showing intraparticle variation in composition and Tg. These results demonstrate the potential for NanoTA + AFM-PTIR to increase our understanding of viscosity within submicrometer atmospheric particles with complex phases, morphologies, and compositions, which will enable improved modeling of aerosol impacts on clouds and climate.
Assuntos
Água , Aerossóis/química , Microscopia de Força Atômica/métodos , Tamanho da Partícula , Temperatura , Temperatura de TransiçãoRESUMO
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (â¢OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase â¢OH exposure (â¼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without â¢OH revealed that decomposition of oligomers by heterogeneous â¢OH oxidation acts as a sink for â¢OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this â¢OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.
Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/química , Atmosfera/química , Hemiterpenos , Butadienos , Aerossóis/química , Material Particulado/análise , Poeira/análise , Oxirredução , Estresse Oxidativo , Poluentes Atmosféricos/análiseRESUMO
Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.
Assuntos
Atmosfera , Hemiterpenos , Ácidos/química , Aerossóis/química , Atmosfera/química , Butadienos , Concentração de Íons de HidrogênioRESUMO
Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (â¼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, ß-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.
Assuntos
Sulfatos , Enxofre , Aerossóis/química , Teoria da Densidade Funcional , Oxirredução , Sulfatos/químicaRESUMO
The pH of a solution is one of its most fundamental chemical properties, impacting reaction pathways and kinetics across every area of chemistry. The atmosphere is no different, with the pH of the condensed phase driving key chemical reactions that ultimately impact global climate in numerous ways. The condensed phase in the atmosphere is comprised of suspended liquid or solid particles, known as the atmospheric aerosol, which are differentiated from cloud droplets by their much smaller size (primarily <10 µm). The pH of the atmospheric aerosol can enhance certain chemical reactions leading to the formation of additional condensed phase mass from lower volatility species (secondary aerosol), alter the optical and water uptake properties of particles, and solubilize metals that can act as key nutrients in nutrient-limited ecosystems or cause oxidative stress after inhalation. However, despite the importance of aerosol acidity for climate and health, our fundamental understanding of pH has been limited due to aerosol size (by number >99% of particles are <1 µm) and complexity. Within a single atmospheric particle, there can be hundreds to thousands of distinct chemical species, varying water content, high ionic strengths, and different phases (liquid, semisolid, and solid). Making aerosol analysis even more challenging, atmospheric particles are constantly evolving through heterogeneous reactions with gases and multiphase chemistry within the condensed phase. Based on these challenges, traditional pH measurements are not feasible, and, for years, indirect and proxy methods were the most common way to estimate aerosol pH, with mixed results. However, aerosol pH needs to be incorporated into climate models to accurately determine which chemical reactions are dominant in the atmosphere. Consequently, experimental measurements that probe pH in atmospherically relevant particles are sorely needed to advance our understanding of aerosol acidity.This Account describes recent advances in measurements of aerosol particle acidity, specifically three distinct methods we developed for experimentally determining particle pH. Our acid-conjugate base method uses Raman microspectroscopy to probe an acid (e.g., HSO4-) and its conjugate base (e.g., SO42-) in individual micrometer-sized particles. Our second approach is a field-deployable colorimetric method based on pH indicators (e.g., thymol blue) and cell phone imaging to provide a simple, low-cost approach to ensemble average (or bulk) pH for particles in distinct size ranges down to a few hundred nanometers in diameter. In our third method, we monitor acid-catalyzed polymer degradation of a thin film (â¼23 nm) of poly(ε-caprolactone) (PCL) on silicon by individual particles with atomic force microscopy (AFM) after inertially impacting particles of different pH. These measurements are improving our understanding of aerosol pH from a fundamental physical chemistry perspective and have led to initial atmospheric measurements. The impact of aerosol pH on key atmospheric processes, such as secondary organic aerosol (SOA) formation, is discussed. Some unique findings, such as an unexpected size dependence to aerosol pH and kinetic limitations, illustrate that particles are not always in thermodynamic equilibrium with the surrounding gas. The implications of our limited, but improving, understanding of the fundamental chemical concept of pH in the atmospheric aerosol are critical for connecting chemistry and climate.
RESUMO
Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.
Assuntos
Trato Gastrointestinal/metabolismo , Nanopartículas Metálicas/química , Prata/metabolismo , Trato Gastrointestinal/química , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Prata/químicaRESUMO
Physicochemical analysis of individual atmospheric aerosols at the most abundant sizes in the atmosphere (<1 µm) is analytically challenging, as hundreds to thousands of species are often present in femtoliter volumes. Vibrational spectroscopies, such as infrared (IR) and Raman, have great potential for probing functional groups in single particles at ambient pressure and temperature. However, the diffraction limit of IR radiation limits traditional IR microscopy to particles > â¼10 µm, which have less relevance to aerosol health and climate impacts. Optical photothermal infrared (O-PTIR) spectroscopy is a contactless method that circumvents diffraction limitations by using changes in the scattering intensity of a continuous wave visible laser (532 nm) to detect the photothermal expansion when a vibrational mode is excited by a tunable IR laser (QCL: 800-1800 cm-1 or OPO: 2600-3600 cm-1). Herein, we simultaneously collect O-PTIR spectra with Raman spectra at a single point for individual particles with aerodynamic diameters <400 nm (prior to impaction and spreading) at ambient temperature and pressure, by also collecting the inelastically scattered visible photons for Raman spectra. O-PTIR and Raman spectra were collected for submicrometer particles with different substrates, particle chemical compositions, and morphologies (i.e., core-shell), as well as IR mapping with submicron spatial resolution. Initial O-PTIR analysis of ambient atmospheric particles identified both inorganic and organic modes in individual sub- and supermicrometer particles. The simultaneous IR and Raman microscopy with submicrometer spatial resolution described herein has considerable potential both in atmospheric chemistry and numerous others fields (e.g., materials and biological research).
RESUMO
The acidity of atmospheric aerosols is a critical property that affects the chemistry and composition of the atmosphere. Many key multiphase chemical reactions are pH-dependent, impacting processes like secondary organic aerosol formation, and need to be understood at a single particle level due to differences in particle-to-particle composition that impact both climate and health. However, the analytical challenge of measuring aerosol acidity in individual particles has limited pH measurements for fine (<2.5 µm) and coarse (2.5-10 µm) particles. This has led to a reliance on indirect methods or thermodynamic modeling, which focus on average, not individual, particle pH. Thus, new approaches are needed to probe single particle pH. In this study, a novel method for pH measurement was explored using degradation of a pH-sensitive polymer, poly(ε-caprolactone), to determine the acidity of individual submicron particles. Submicron particles of known pH (0 or 6) were deposited on a polymer film (21-25 nm thick) and allowed to react. Particles were then rinsed off, and the degradation of the polymer was characterized using atomic force microscopy and Raman microspectroscopy. After degradation, holes in the PCL films exposed to pH 0 were observed, and the loss of the carbonyl stretch was monitored at 1723 cm-1. As particle size decreased, polymer degradation increased, indicating an increase in aerosol acidity at smaller particle diameters. This study describes a new approach to determine individual particle acidity and is a step toward addressing a key measurement gap related to our understanding of atmospheric aerosol impacts on climate and health.
Assuntos
Poluentes Atmosféricos/análise , Polímeros/química , Aerossóis/análise , Atmosfera/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Harmful algal blooms (HABs) caused by cyanobacteria in freshwater environments produce toxins (e.g., microcystin) that are harmful to human and animal health. HAB frequency and intensity are increasing with greater nutrient runoff and a warming climate. Lake spray aerosol (LSA) released from freshwater lakes has been identified on lakeshores and after transport inland, including from lakes with HABs, but little is known about the potential for HAB toxins to be incorporated into LSA. In this study, freshwater samples were collected from two lakes in Michigan: Mona Lake during a severe HAB with microcystin concentrations (>200 µg/L) well above the Environmental Protection Agency (EPA) recommended "do not drink" level (1.6 µg/L) and Muskegon Lake without a HAB (<1 µg/L microcystin). Microcystin toxins were identified in freshwater, as well as aerosol particles generated in the laboratory from Mona Lake water by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at atmospheric concentrations up to 50 ± 20 ng/m3. Enrichment of hydrophobic microcystin congeners (e.g., microcystin-LR) was observed in aerosol particles relative to bulk freshwater, while enrichment of hydrophilic microcystin (e.g., microcystin-RR) was lower. As HABs increase in a warming climate, understanding and quantifying the emissions of toxins into the atmosphere is crucial for evaluating the health consequences of HABs.
Assuntos
Proliferação Nociva de Algas , Lagos , Aerossóis , Animais , Cromatografia Líquida , Humanos , Michigan , Microcistinas , Espectrometria de Massas em TandemRESUMO
Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
Assuntos
Atmosfera , Sulfatos , Aerossóis , Química Orgânica , FlorestasRESUMO
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.
Assuntos
Atmosfera , Pentanos , Aerossóis , Butadienos , Hemiterpenos , Sulfatos , TennesseeRESUMO
Fine particulate matter (PM2.5) is known to have an adverse impact on public health and is an important climate forcer. Secondary organic aerosol (SOA) contributes up to 80% of PM2.5 worldwide and multiphase reactions are an important pathway to form SOA. Aerosol-phase state is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering diffusion rates within particles. Current air quality models do not include the impact of diffusion-limiting organic coatings on SOA formation. This work examines how α-pinene-derived organic coatings change the predicted formation of SOA from the acid-catalyzed multiphase reactions of isoprene epoxydiols (IEPOX). A box model, with inputs provided from field measurements taken at the Look Rock (LRK) site in Great Smokey Mountains National Park during the 2013 Southern Oxidant and Aerosol Study (SOAS), was modified to incorporate the latest laboratory-based kinetic data accounting for organic coating influences. Including an organic coating influence reduced the modeled reactive uptake when relative humidity was in the 55-80% range, with predicted IEPOX-derived SOA being reduced by up to 33%. Only sensitivity cases with a large increase in Henry's Law values of an order of magnitude or more or in particle reaction rates resulted in the large statistically significant differences form base model performance. These results suggest an organic coating layer could have an impact on IEPOX-derived SOA formation and warrant consideration in regional and global scale models.
RESUMO
Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.
RESUMO
Measuring the acidity of atmospheric aerosols is critical, as many key multiphase chemical reactions involving aerosols are highly pH-dependent. These reactions impact processes, such as secondary organic aerosol (SOA) formation, that impact climate and health. However, determining the pH of atmospheric particles, which have minute volumes (10-23-10-18 L), is an analytical challenge due to the nonconservative nature of the hydronium ion, particularly as most chemical aerosol measurements are made offline or under vacuum, where water can be lost and acid-base equilibria shifted. Because of these challenges, there have been no direct methods to probe atmospheric aerosol acidity, and pH has typically been determined by proxy/indirect methods, such as ion balance, or thermodynamic models. Herein, we present a novel and facile method for direct measurement of size-resolved aerosol acidity from pH 0 to 4.5 using quantitative colorimetric image processing of cellular phone images of (NH4)2SO4-H2SO4 aqueous aerosol particles impacted onto pH-indicator paper. A trend of increasing aerosol acidity with decreasing particle size was observed that is consistent with spectroscopic measurements of individual particle pH. These results indicate the potential for direct measurements of size-resolved atmospheric aerosol acidity, which is needed to improve fundamental understanding of pH-dependent atmospheric processes, such as SOA formation.
RESUMO
In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, LSA were produced in the laboratory from freshwater samples collected from Lake Michigan and Lake Erie during HAB and nonbloom conditions. The incorporation of biological material within the individual HAB-influenced LSA particles was examined by single-particle mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and fluorescence microscopy. Freshwater with higher blue-green algae content produced higher number fractions of individual LSA particles that contained biological material, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of individual LSA particles containing biological material also increased with particle diameter (greater than 0.5 µm), a size dependence that is consistent with previous studies of sea spray aerosol impacted by phytoplankton blooms. Similar to sea spray aerosol, organic carbon markers were most frequently observed in individual LSA particles less than 0.5 µm in diameter. Understanding the transfer of biological material from freshwater to the atmosphere via LSA is crucial for determining health and climate effects of HABs.
Assuntos
Proliferação Nociva de Algas , Lagos , Aerossóis , Humanos , Michigan , FitoplânctonRESUMO
Isoprene, the most abundant biogenic volatile organic compound (BVOC) in the atmosphere, and its low-volatility oxidation products lead to secondary organic aerosol (SOA) formation. Isoprene-derived organosulfates formed from reactions of isoprene oxidation products with sulfate in the particle phase are a significant component of SOA and can hydrolyze forming polyols. Despite characterization by mass spectrometry, their basic structural and spectroscopic properties remain poorly understood. Herein, Raman microspectroscopy and density functional theory (DFT) calculations (CAM-B3LYP level of theory) were combined to analyze the vibrational modes of key organosulfates, 3-methyltetrol sulfate esters (racemic mixture of two isomers), and racemic 2-methylglyceric acid sulfate ester, and hydrolysis products, 2-methyltetrols, and 2-methylglyceric acid. Two intense vibrational modes were identified, ν(RO-SO3) (846 ± 4 cm-1) and νs(SO3) (1065 ± 2 cm-1), along with a lower intensity δ(SO3) mode (586 ± 2 cm-1). For 2-methylglyceric acid and its sulfate esters, deprotonation of the carboxylic acid at pH values above the pKa decreased the carbonyl stretch frequency (1724 cm-1), while carboxylate modes grew in for νs(COO-) and νa(COO-) at 1413 and 1594 cm-1, respectively. The ν(RO-SO3) and νs(SO3) modes were observed in individual atmospheric particles and can be used in future studies of complex SOA mixtures to distinguish organosulfates from inorganic sulfate or hydrolysis products.