Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Cancer ; 9: 207, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19558693

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. METHODS: Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. RESULTS: EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. CONCLUSION: COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Dinoprostona/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Prostaglandina E/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo-Oxigenase 2/metabolismo , Receptores ErbB/metabolismo , Citometria de Fluxo/métodos , Humanos , Imuno-Histoquímica/métodos , Lesões Pré-Cancerosas , Receptores de Prostaglandina E Subtipo EP4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Eur Heart J ; 27(10): 1251-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16624831

RESUMO

AIMS: The use of doxorubicin (DOX) as a chemotherapeutic agent is limited by cardiac injury. Iloprost, a stable synthetic analogue of prostacyclin, has previously been shown to protect against DOX-induced cardiomyocyte injury in vitro. Here, we addressed whether iloprost is cardioprotective in vivo and whether it compromises the anti-tumour efficacy of DOX. METHODS AND RESULTS: Lewis Lung Carcinoma cells were implanted subcutaneously in the flank of C57BL/6 mice. DOX treatment was commenced from when tumours became visible. Iloprost was administered from prior to DOX treatment until sacrifice. Echocardiography and invasive haemodynamic measurements were performed immediately before sacrifice. As expected, DOX induced cardiac cell apoptosis and cardiac dysfunction, both of which were attenuated by iloprost. Also, iloprost alone had no effect on tumor growth and indeed, did not alter the DOX-induced suppression of this growth. CONCLUSION: In a murine model, iloprost attenuated the acute cardiac injury and dysfunction induced by DOX therapy without compromising its chemotherapeutic effect.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Cardiomiopatias/prevenção & controle , Doxorrubicina/efeitos adversos , Iloprosta/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Apoptose , Carcinoma Pulmonar de Lewis/patologia , Cardiomiopatias/induzido quimicamente , Divisão Celular , Interações Medicamentosas , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Transplante de Neoplasias , Células Tumorais Cultivadas
4.
Science ; 296(5567): 539-41, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11964481

RESUMO

Thromboxane (Tx) A2 is a vasoconstrictor and platelet agonist. Aspirin affords cardioprotection through inhibition of TxA2 formation by platelet cyclooxygenase (COX-1). Prostacyclin (PGI2) is a vasodilator that inhibits platelet function. Here we show that injury-induced vascular proliferation and platelet activation are enhanced in mice that are genetically deficient in the PGI2 receptor (IP) but are depressed in mice genetically deficient in the TxA2 receptor (TP) or treated with a TP antagonist. The augmented response to vascular injury was abolished in mice deficient in both receptors. Thus, PGI2 modulates platelet-vascular interactions in vivo and specifically limits the response to TxA2. This interplay may help explain the adverse cardiovascular effects associated with selective COX-2 inhibitors, which, unlike aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs), inhibit PGI2 but not TxA2.


Assuntos
Lesões das Artérias Carótidas , Endotélio Vascular/fisiologia , Epoprostenol/fisiologia , Ativação Plaquetária , Tromboxano A2/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/citologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/fisiologia , Divisão Celular , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/efeitos adversos , Inibidores de Ciclo-Oxigenase/uso terapêutico , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Epoprostenol/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Lactonas/efeitos adversos , Lactonas/uso terapêutico , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Naftalenos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Propionatos , Prostaglandina-Endoperóxido Sintases , Receptores de Epoprostenol , Receptores de Prostaglandina/fisiologia , Receptores de Tromboxanos/antagonistas & inibidores , Receptores de Tromboxanos/genética , Receptores de Tromboxanos/fisiologia , Sulfonas , Tetra-Hidronaftalenos/farmacologia , Túnica Íntima/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA