Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(4): 1229-1244, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38356237

RESUMO

Food chemicals have a fundamental role in our lives, with an extended impact on nutrition, disease prevention, and marked economic implications in the food industry. The number of food chemical compounds in public databases has substantially increased in the past few years, which can be characterized using chemoinformatics approaches. We and other groups explored public food chemical libraries containing up to 26,500 compounds. This study aimed to analyze the chemical contents, diversity, and coverage in the chemical space of food chemicals and additives and, from here on, food components. The approach to food components addressed in this study is a public database with more than 70,000 compounds, including those predicted via omics techniques. It was concluded that food components have distinctive physicochemical properties and constitutional descriptors despite sharing many chemical structures with natural products. Food components, on average, have large molecular weights and several apolar structures with saturated hydrocarbons. Compared to reference databases, food component structures have low scaffold and fingerprint-based diversity and high structural complexity, as measured by the fraction of sp3 carbons. These structural features are associated with a large fraction of macronutrients as lipids. Lipids in food components were decompiled by an analysis of the maximum common substructures. The chemical multiverse representation of food chemicals showed a larger coverage of chemical space than natural products and FDA-approved drugs by using different sets of representations.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Produtos Biológicos/química , Lipídeos
2.
J Nat Prod ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269718

RESUMO

Natural products (NPs) are secondary metabolites of natural origin with broad applications across various human activities, particularly the discovery of bioactive compounds. Structural elucidation of new NPs entails significant cost and effort. On the other hand, the dereplication of known compounds is crucial for the early exclusion of irrelevant compounds in contemporary pharmaceutical research. NAPROC-13 stands out as a publicly accessible database, providing structural and 13C NMR spectroscopic information for over 25 000 compounds, rendering it a pivotal resource in natural product (NP) research, favoring open science. This study seeks to quantitatively analyze the chemical content, structural diversity, and chemical space coverage of NPs within NAPROC-13, compared to FDA-approved drugs and a very diverse subset of NPs, UNPD-A. Findings indicated that NPs in NAPROC-13 exhibit properties comparable to those in UNPD-A, albeit showcasing a notably diverse array of structural content, scaffolds, ring systems of pharmaceutical interest, and molecular fragments. NAPROC-13 covers a specific region of the chemical multiverse (a generalization of the chemical space from different chemical representations) regarding physicochemical properties and a region as broad as UNPD-A in terms of the structural features represented by fingerprints.

3.
ACS Omega ; 9(23): 25322-25331, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882162

RESUMO

There is increasing awareness of epigenetics's importance in understanding disease etiologies and developing novel therapeutics. An increasing number of publications in the past few years reflect the renewed interest in epigenetic processes and their relationship with food chemicals. However, there needs to be a recent study that accounts for the most recent advances in the area by associating the chemical structures of food and natural product components with their biological activity. Here, we analyze the status of food chemicals and their intersection with natural products in epigenetic research. Using chemoinformatics tools, we compared quantitatively the chemical contents, structural diversity, and coverage in the chemical space of food chemicals with reported epigenetic activity. As part of this work, we built and curated a compound database of food and natural product chemicals annotated with structural information, an epigenetic target activity profile, and the main source of the food chemical or natural product, among other relevant features. The compounds are cross-linked with identifiers from other major public databases such as FooDB and the collection of open natural products, COCONUT. The compound database, the "Epi Food Chemical Database", is accessible in HTML and CSV formats at https://github.com/DIFACQUIM/Epi_food_Chemical_Database.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA