Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 20(14): 2795-806, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21518730

RESUMO

Huntington's disease (HD) is caused by the expansion mutation above a length threshold of a polyglutamine (polyQ) stretch in the huntingtin (Htt) protein. Mutant Htt (mHtt) pathogenicity is proposed to rely on its malfunction and propensity to misfold and aggregate. Htt has scaffolding properties and has been reported to interact with hundreds of partners. Many interactors show apparent increased or decreased affinity (dysinteraction) for mHtt, which may account for selective malfunctions and striatal degeneration in HD. These dysinteractions are proposed to result from mutant polyQ conformational changes that remain elusive. To date, dysinteractions have only been studied using semi-quantitative techniques with their outcome potentially influenced by the presence of mHtt aggregates. Therefore, the molecular mechanism underlying these dysinteractions remains to be determined. Here, we have used purified proteins devoid of aggregates to quantify the interaction of normal and mHtt with two partners: SH3GL3, reported to have increased binding to mHtt, and the 2B4 antibody, a model partner. Using surface plasmon resonance and pull-down techniques, we show that in the absence of aggregation polyQ length has no effect on Htt interactions. We demonstrate that the presence of aggregates affects the spatial distribution and solubility of Htt partners and strongly influences the outcome of pull-down experiments. Our results show that expanded polyQ per se does not alter Htt interactions and suggest that aggregated mHtt form molecular platforms that influence the Htt interacting network. Modulating mHtt aggregation could thus have beneficial effects on specific cellular pathways deregulated in HD.


Assuntos
Doença de Huntington/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anticorpos Monoclonais Murinos/química , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Sci Rep ; 9(1): 19152, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844074

RESUMO

Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington's disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.


Assuntos
Proteína Huntingtina/genética , Expansão das Repetições de Trinucleotídeos/genética , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , DNA/genética , Éxons/genética , Humanos , Proteína Huntingtina/química , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/genética
3.
J Huntingtons Dis ; 8(1): 53-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30594931

RESUMO

BACKGROUND: Previous studies suggest that Huntingtin, the protein mutated in Huntington's disease (HD), is required for actin based changes in cell morphology, and undergoes stimulus induced targeting to plasma membranes where it interacts with phospholipids involved in cell signaling. The small GTPase Rac1 is a downstream target of growth factor stimulation and PI 3-kinase activity and is critical for actin dependent membrane remodeling. OBJECTIVE: To determine if Rac1 activity is impaired in HD or regulated by normal Huntingtin. METHODS: Analyses were performed in differentiated control and HD human stem cells and HD Q140/Q140 knock-in mice. Biochemical methods included SDS-PAGE, western blot, immunoprecipitation, affinity chromatography, and ELISA based Rac activity assays. RESULTS: Basal Rac1 activity increased following depletion of Huntingtin with Huntingtin specific siRNA in human primary fibroblasts and in human control neuron cultures. Human cells (fibroblasts, neural stem cells, and neurons) with the HD mutation failed to increase Rac1 activity in response to growth factors. Rac1 activity levels were elevated in striatum of 1.5-month-old HD Q140/Q140 mice and in primary embryonic cortical neurons from HD mice. Affinity chromatography analysis of striatal lysates showed that Huntingtin is in a complex with Rac1, p85α subunit of PI 3-kinase, and the actin bundling protein α-actinin and interacts preferentially with the GTP bound form of Rac1. The HD mutation reduced Huntingtin interaction with p85α. CONCLUSIONS: These findings suggest that Huntingtin regulates Rac1 activity as part of a coordinated response to growth factor signaling and this function is impaired early in HD.


Assuntos
Doença de Huntington/genética , Mutação/genética , Neuropeptídeos/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Diferenciação Celular , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Transdução de Sinais/genética
4.
J Mol Biol ; 430(24): 5257-5279, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30266595

RESUMO

Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biological functions and are of great interest for biotechnology. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small molecules interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation. Here, we report on SynAggreg, an in vitro high-throughput (HT) platform dedicated to the precision study of amyloid aggregation and the effect of modulator compounds. SynAggreg relies on an accurate bi-fluorescent amyloid-tracer readout that overcomes some limitations of existing HT methods. It allows addressing diverse aspects of aggregation modulation that are critical for pathomechanistic studies, such as the specificity of compounds toward various amyloids and their effects on aggregation kinetics, as well as the co-assembly propensity of distinct amyloids and the influence of prion-like seeding on self-assembly. Furthermore, SynAggreg is the first HT technology that integrates tailored methodology to systematically identify synergistic compound combinations-an emerging strategy to improve fatal amyloidoses by targeting multiple steps of the aggregation pathway. To this end, we apply analytical combinatorial scores to rank the inhibition efficiency of couples of compounds and to readily detect synergism. Finally, the SynAggreg platform should be suited for the characterization of a broad class of amyloids, whether of interest for drug development purposes, for fundamental research on amyloid functions, or for biotechnological applications.


Assuntos
Proteínas Amiloidogênicas/química , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Amiloidogênicas/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA