RESUMO
This study investigated the effects of in-ovo inoculation of betaine on hatchability, hatching weight, and intestinal development, as well as serum and expression levels of some antioxidants in the posthatched chicks. A total of 350 fertile eggs of Hubbard efficiency plus breeder's flock were incubated at normal incubation temperature (37.5°C) and randomly assembled into 3 groups with 4 replicates, and 25 eggs per each. The experimental groups were allocated as noninjected control group (CN), diluent-injected group (CP, 0.1 mL saline), and betaine-injected group (B, 2.5 mg in 0.1 mL saline). The injections were performed in the air cells of the eggs on the 12th day of the embryonic phase. Hatchability percentage, hatching weight, serum-reduced glutathione (GSH), and superoxide dismutase (SOD) were estimated in 7-day-old chicks. Moreover, expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD were determined in the breast skeletal muscles of chicks. Jejunum histo-morphometric analysis was assessed with computerised morphometric measurements. The results revealed that the hatchability percentage was not influenced by in-ovo injection of betaine or vehicle while betaine significantly increased the hatchling's weight of chicks. Moreover, there were a significant increase in SOD and Nrf2 mRNA expression levels. In-ovo injection of betaine significantly induced positive effects on intestinal morphometry by ameliorating the jejunal villus length, the ratio of villus height to villus width, and absorptive surface area.
Assuntos
Antioxidantes , Betaína , Galinhas , Intestinos , Animais , Embrião de Galinha/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Betaína/farmacologia , Betaína/administração & dosagem , Galinhas/fisiologia , Galinhas/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Músculo Esquelético/efeitos dos fármacos , Óvulo/efeitos dos fármacosRESUMO
The effect of postharvest dipping treatments with 0.5 mM melatonin (MT) and 1% chitosan (CT) either alone or in combination on quality of pre-climacteric 'Williams' bananas during ripening at ambient conditions were investigated. MT or CT treatments delayed ripening by retaining greener peel, higher firmness, titratable acidity (TA), but lower total soluble solids (TSS) and TSS/TA, weight loss, browning and electrolyte leakage than the control. Total phenol (TPC) and flavonoid contents (TFC) in both peel and pulp increased up to 6 days and then decreased and was higher in treated fruit than the control. Vitamin C content decreased up to 3 days, then increased and was higher in treated fruit than control. MT and CT combination exhibited the highest TPC, TFC and vitamin C contents compared to other treatments. Radical scavenging capacity (RSC) of peel and pulp increased up to 6 days, then decreased and was higher in treated fruit than the control. The treated fruit exhibited lower polyphenoloxidase (PPO) and hydrolytic enzymes but higher peroxidase (POD) activities in both peel and pulp than the control. Postharvest treatments with 0.5 mM MT and 1% CT alone or in combination could be used to retain quality of 'Williams' bananas during ripening.
RESUMO
BACKGROUND: Banana fruit undergo rapid metabolic changes following the induction of ripening. They result in excessive softening, chlorophyll degradation, browning, and senescence during postharvest life. As part of a continuous effort to extend fruit shelf life and maintain the best possible quality, this study examined the effect of a 24-epibrassinolide (EBR) and chitosan (CT) composite coating on 'Williams' bananas ripening in ambient conditions. Fruit were soaked in 20 µM EBR, 10 g L-1 CT (w/v), and 20 µM EBR + 10 g L-1 CT solutions for 15 min and were kept at 23 ± 1 °C and 85-90% (RH) for 9 days. RESULTS: The combined treatment (20 µM EBR + 10 g L-1 CT) clearly delayed fruit ripening; bananas treated with this showed less peel yellowing, weight loss, and total soluble solids, and greater firmness, titratable acidity, membrane stability index, and ascorbic acid content than the untreated control. After the treatment, the fruit also presented higher radical scavenging capacity, and higher total phenol and flavonoid content. The activity of polyphenoloxidase and hydrolytic enzymes was lower, and that of peroxidase was higher in both the peel and pulp of all the treated fruit than in the control. CONCLUSION: The combined treatment (20 µM EBR + 10 g L-1 CT) is suggested as an effective composite edible coat to retain the quality of 'Williams' bananas during ripening. © 2023 Society of Chemical Industry.
RESUMO
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7-40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL-1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5-15.5 ppm for I-IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.
Assuntos
Anopheles/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Inseticidas/farmacologia , Óxido de Magnésio/farmacologia , Penicillium chrysogenum/crescimento & desenvolvimento , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Química Verde , Inseticidas/química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Óxido de Magnésio/química , Óxido de Magnésio/isolamento & purificação , Metabolômica , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Penicillium chrysogenum/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pupa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Embryonic thermal manipulation led to several modifications in molecular, physiological, and biochemical parameters which affect pre- and post-hatch growth performance. The current study aims to elucidate the onset and long-term effects of intermittent thermal manipulations (TM) during two-time windows, early/late, of embryogenesis in Japanese quail (Coturnix japonica) on embryonic development, hatchability, muscle histogenesis, and post-hatch growth performance. Four groups were created; quail eggs in the control group were incubated at 37.7 °C and relative humidity (RH) 55%. Three thermally treated groups were incubated intermittently at 41 °C and 65% RH intermittently (3 h/day): early embryogenesis group (EE) was thermally treated during embryonic days (ED) 6-8, late embryogenesis group (LE) was thermally treated during (ED12-ED14), and early and late embryogenesis group (EL) was thermally manipulated in both time windows. Relative embryo weights in EL and EE were significantly lighter than those in LE and Ctrl groups. The hatched chicks were reared under optimal managemental conditions (three replicates per treatment). Average daily feed intake was recorded, and feed conversion ratio (FCR) was calculated. Histological and quantitative analyses of muscle fibers were performed. The results revealed that TM led to significant hypertrophy of quail breast muscle in (EE). Intermittent short-term (3-6 h) thermal manipulation (39-40 °C) protocols during early embryogenesis (ED6-ED8) could be recommended to enhance muscle mass growth and breast muscle yield in the Japanese quail.
Assuntos
Coturnix , Óvulo , Animais , Galinhas , Desenvolvimento Embrionário , CodornizRESUMO
The objectives of the current study were to detect putative genomic loci and to identify candidate genes associated with milk production traits in Egyptian buffalo. A total number of 161 479 daily milk yield (DMY) records and 60 318 monthly measures for fat and protein percentages (FP and PP, respectively), along with fat and protein yields (FY and PY, respectively) from 1670 animals were used. Genotyping was performed using Axiom® Buffalo Genotyping 90 K array. Genome-wide association study (GWAS) for each trait was performed using PLINK. After Bonferroni correction, 47 SNPs were associated with one or more milk production traits. These SNPs were distributed over 36 quantitative trait loci (QTL) and located on 20 buffalo chromosomes (BBU). For the 47 SNPs, one was overlapped for three traits (DMY, FY, and PY), six were associated with two traits (one for PP and PY and five for FY and PY) while the rest were associated with only one trait. Out of 36 identified QTL, eleven were overlapped with previously reported loci in buffalo and/or cattle populations. Some of these SNPs are placed within or close to potential candidate genes, for example: TPD52, ZBTB10, RALYL and SNX16 on BBU15, ADGRD1 on BBU17, ESRRG on BBU5 and GRIP1 on BBU4. This is the first reported study between genome-wide markers and milk components in Egyptian buffalo. Our findings provide useful information to explore the genetic mechanisms and relevant genes contributing to the variation in milk production traits. Further confirmation studies with larger population size are necessary to validate the findings and detect the causal genetic variants.
Assuntos
Búfalos/genética , Búfalos/fisiologia , Lactação/genética , Leite/fisiologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Lactação/fisiologia , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
In this study, two endophytic actinomycetes isolates Oc-5 and Acv-11, were isolated from healthy leaves of medicinal plant Oxalis corniculata L. These isolates were identified as Streptomyces zaomyceticus Oc-5 and Streptomyces pseudogriseolus Acv-11 using 16S rRNA gene sequence. Biomass extract of these strains were used as a greener attempt for synthesis of copper oxide nanoparticles (CuO-NPs). The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infra-red (FT-IR) spectroscopy, X-ray diffraction (XRD)' transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). Green synthesized NPs showed surface plasmon resonance (SPR) absorption band at 400 nm, crystalline nature, spherical-shaped with an average size of 78 nm and 80.0 nm for CuO-NPs synthesized using strain Oc-5 and Acv-11, respectively. The bioactivities of CuO-NPs were evaluated. Results revealed that CuO-NPs exhibited promising antimicrobial activity against prokaryotic and eukaryotic microbial cells (Gram positive bacteria, Gram negative bacteria, unicellular and multicellular fungi). In addition, it showed antimicrobial potential against phyto-pathogenic fungal strains Fusarium oxysporum, Pythium ultimum, Aspergillus niger and Alternaria alternata. We further explored the in vitro antioxidant activity and cytotoxicity for biosynthesized CuO-NPs. The results revealed that' scavenging and total antioxidant activity for NPs synthesized using Streptomyces pseudogriseolus Acv-11 was better than those synthesized by Streptomyces zaomyceticus Oc-5. Also, the morphological changes and cell viability for Vero and Caco-2 cell line due to NPs treatments were assessed using MTT assay method. Furthermore, Larvicidal efficacy against Musca domestica and Culex pipiens was evaluated. The results obtained in this study clearly showed that biosynthesized CuO-NPs exhibited effective bioactivity and, therefore, provide a base for the development of versatile biotechnological applications soon.
Assuntos
Anti-Infecciosos/farmacologia , Cobre/farmacologia , Sequestradores de Radicais Livres/farmacologia , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Streptomyces/metabolismo , Animais , Anti-Infecciosos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Biotecnologia/métodos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cobre/química , Cobre/toxicidade , Culex/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Moscas Domésticas/efeitos dos fármacos , Humanos , Inseticidas/metabolismo , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/efeitos dos fármacos , Oxalidaceae/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/isolamento & purificação , Células VeroRESUMO
Aims: To provide comprehensive information on the access and use of cardiac implantable electronic devices (CIED) and catheter ablation procedures in Africa. Methods and results: The Pan-African Society of Cardiology (PASCAR) collected data on invasive management of cardiac arrhythmias from 2011 to 2016 from 31 African countries. A specific template was completed by physicians, and additional information obtained from industry. Information on health care systems, demographics, economics, procedure rates, and specific training programs was collected. Considerable heterogeneity in the access to arrhythmia care was observed across Africa. Eight of the 31 countries surveyed (26%) did not perform pacemaker implantations. The median pacemaker implantation rate was 2.66 per million population per country (range: 0.14-233 per million population). Implantable cardioverter-defibrillator and cardiac resynchronization therapy were performed in 12/31 (39%) and 15/31 (48%) countries respectively, mostly by visiting teams. Electrophysiological studies, including complex catheter ablations were performed in all countries from Maghreb, but only one sub-Saharan African country (South Africa). Marked variation in cost (up to 1000-fold) was observed across countries with an inverse correlation between implant rates and the procedure fees standardized to the gross domestic product per capita. Lack of economic resources and facilities, high cost of procedures, deficiency of trained physicians, and non-existent fellowship programs were the main drivers of under-utilization of interventional cardiac arrhythmia care. Conclusion: There is limited access to CIED and ablation procedures in Africa. A quarter of countries did not have pacemaker implantation services, and catheter ablations were only available in one country in sub-Saharan Africa.
Assuntos
Arritmias Cardíacas/terapia , Terapia de Ressincronização Cardíaca/estatística & dados numéricos , Cardiologia/estatística & dados numéricos , Ablação por Cateter/estatística & dados numéricos , Implantação de Prótese/estatística & dados numéricos , Comitês Consultivos , África , Terapia de Ressincronização Cardíaca/economia , Cardiologia/educação , Ablação por Cateter/economia , Desfibriladores Implantáveis , Técnicas Eletrofisiológicas Cardíacas , Custos de Cuidados de Saúde , Gastos em Saúde , Mão de Obra em Saúde , Humanos , Marca-Passo Artificial , Implantação de Prótese/economia , Sociedades MédicasRESUMO
Quality and biochemical changes of 'Hindi-Besennara' mangoes in response to chitosan, gallic acid (GA) and chitosan gallate (CG) postharvest dipping were studied during 2 weeks of storage at 20 ± 2 °C and 60-70% RH. Both GA and CG lowered decay and weight loss during storage. Chitosan and GA at high level and CG at both level maintained higher membrane stability index of peel than control. Fruits treated only CG and GA at high level and chitosan at both levels retained higher acidity and vitamin C but lower pH and total soluble solids (TSS) than control. All treatments resulted with fruits with higher flesh firmness and lower TSS/acid ratio than untreated fruits. GA at both rates gave lower total phenols after 1 week of storage than control. Both levels of GA and low level of chitosan resulted with fruits with higher antioxidant capacity (lower IC50 values) after 1 week of storage than control. All treatments decreased α-amylase activity of fruit peel compared to control. CG and GA at high level and chitosan at low level increased peroxidase activity compared to control. It was concluded that CG and GA dipping delayed ripening and maintained quality of 'Hindi-Besennara' mangoes during 2 weeks of shelf life.
RESUMO
The effect of postharvest chitosan, gallic acid (GA) and chitosan gallate (CG) dipping treatments at different concentrations on quality parameters, antioxidant compounds, free radical scavenging capacity (FRSC) and enzymes activities of 'Sukkari' bananas were studied during storage (ripening) at 20 ± 2 °C and 60-70% RH for 13 days. Weight loss and peel color index (the change from green to yellow) increased while, membrane stability index of peel tissues, pulp firmness and acidity decreased during storage. CG and GA treatments slowed down the changes in these parameters compared to control. Total soluble solids (TSS) concentration increased during storage and was lower at CG than other treatments. TSS/acid ratio increased during storage and showed higher value after storage than initial. This ratio was lower at 1% chitosan, 0.075% GA and CG treatments than control. Both vitamin C and total flavonoids concentrations decreased during storage and were not affected by the applied treatments. Total phenols concentration decreased during storage and was higher at acetic acid and the high rate of chitosan, GA and CG treatments than control. FRSC (DPPH IC50 values) of fruit peel ranged from 2.54 to 4.19 µg phenolics concentration among the treatments. FRSC was not affected by the applied treatments but increased (lower IC50 value) during shelf life. The possible relations of these biochemical changes with the activities of the enzymes α-amylase, xylanase, polygalacturonase, peroxidase and polyphenoloxidase were discussed. It is concluded that postharvest CG and GA treatments delayed ripening and maintained better quality parameters of 'Sukkari' bananas during 13 days of shelf life than control.
RESUMO
BACKGROUND: The plant roots excrete a large number of organic compounds into the soil. The rhizosphere, a thin soil zone around the roots, is a hotspot for microbial activity, making it a crucial component of the soil ecosystem. Secondary metabolites produced by rhizospheric Sphingomonas sanguinis DM have sparked significant curiosity in investigating their possible biological impacts. METHODS: A bacterial strain has been isolated from the rhizosphere of Datura metel. The bacterium's identification, fermentation, and working up have been outlined. The ethyl acetate fraction of the propagated culture media of Sphingomonas sanguinis DM was fractioned and purified using various chromatographic techniques. The characterization of the isolated compounds was accomplished through the utilization of various spectroscopic techniques, such as UV, MS, 1D, and 2D-NMR. Furthermore, the evaluation of their antimicrobial activity was conducted using the agar well diffusion method, while cytotoxicity was assessed using the MTT test. RESULTS: The extract from Sphingomonas sanguinis DM provided two distinct compounds: n-dibutyl phthalic acid (1) and Bis (2-methyl heptyl) phthalate (2) within its ethyl acetate fraction. Furthermore, the 16S rRNA gene sequence of Sphingomonas sanguinis DM has been registered under the NCBI GenBank database with the accession number PP422198. The bacterial extract exhibited its effect against gram-positive bacteria, inhibiting Streptococcus mutans (12.6 ± 0.6 mm) and Staphylococcus aureus (10.6 ± 0.6 mm) compared to standard antibiotics. Conversely, compound 1 showed a considerable effect against phytopathogenic fungi such as Alternaria alternate (56.3 ± 10.6 mm) and Fusarium oxysporum (21.3 ± 1.5 mm) with a MIC value of 17.5 µg/mL. However, it was slightly active against Klebsiella pneumonia (11.0 ± 1.0 mm). Furthermore, compound 2 was the most active metabolite, having a significant antimicrobial efficacy against Rhizoctonia solani (63.6 ± 1.1 mm), Pseudomonas aeruginosa (16.7 ± 0.6 mm), and Alternaria alternate (20.3 ± 0.6 mm) with MIC value at 15 µg/mL. In addition, compound 2 exhibited the most potency against hepatocellular (HepG-2) and skin (A-431) carcinoma cell lines with IC50 values of 107.16 µg/mL and 111.36 µg/mL, respectively. CONCLUSION: Sphingomonas sanguinis DM, a rhizosphere bacterium of Datura metel, was studied for its phytochemical and biological characteristics, resulting in the identification of two compounds with moderate antimicrobial and cytotoxic activities.
Assuntos
Datura metel , Rizosfera , Sphingomonas , Datura metel/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Testes de Sensibilidade Microbiana , Raízes de Plantas/microbiologia , Antibacterianos/farmacologia , Metabolismo SecundárioRESUMO
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an 8-week treatment with either EVOO (90 g/kg of the diet) (DO) or Hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired ß-cell function. In contrast, treatments with EVOO and Hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, Hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced ß-cell survival. Molecular docking and dynamics confirm Hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and Hydroxytyrosol. Moreover, the favorable docking scores of Hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.
RESUMO
Background: Periodontitis is a long-term, multifactorial inflammatory condition that is triggered by bacterial germs and interacts with the host's immune system. The unique attachment of fibrous tissue between the cementum and bone presents a challenge for periodontal regeneration. Aim: To achieve the lowest optimum dose of BMP-7 that helps in periodontal regeneration, involving newly formed cementum, PDL and bone. Materials and methods: Five healthy mongrel dogs were used for the study. A critical class III furcation defect was created using rotating burs. The bone defects (ten defects for each group) were allocated to one of the subsequent groups: (Group 1) control with the surgical defect only. (Group 2) Surgical defect implanted with hydrogel only (CS/ß-GP). (Group 3) Surgical defect implanted with CS/BMP-7 (50 ng/ml). (Group 4) Surgical defect implanted with CS/BMP-7 (100 ng/ml). Results: Histomorphometric and H&E analysis revealed a statistically significant difference in bone, PDL, and cementum regeneration defects filled with CS/BMP-7 (100 ng/ml) compared with other groups. Conclusion: The standard effective dose for BMP-7 use in periodontal regeneration is 100 ng/ml.
RESUMO
Success artificial pollination with viable pollen is crucial process in the production chain of date palms. This study evaluated the impact of pollen storage temperature and duration, pollination time following spathe cracking, and the hour of daytime on pollen viability, germinability, fruit set and yield of 'Deglet Nour' date palm cultivar. In in vitro tests, fresh pollen showed the maximum viability (96.3%) and germination (85%) but it decreased thereafter upon the storage temperature (28, 4 and -30 °C) and duration (3, 6, 9 and 12 months). In this respect, pollen stored at -30 °C retained highest viability and germinability followed by those stored at 4 and then at 28 °C. In filed experiments, fruit set was 85, 75, 65, and 45% with pollination using fresh pollen, or pollen stored at -30, 4 and 28 °C, respectively. Fruit set was 95%, 75%, and less than 50%, for pollination performed on the same day of spathe cracking, 6 and 12 days later, respectively. The highest fruit set percentage and yield/bunch were obtained with pollination performed between 12.0 pm and 15.0 pm in contrast to 8.0-11.0 am or 16.0-17.0.
RESUMO
Availability of efficient male genotypes is critical for successful artificial pollination and regular bearing of female date palms. The effect of flowering stage and storage conditions on pollen quality of six male date palm genotypes encoded 'ABD1', 'P4', 'P3', 'P8', 'P7' and 'P13'were evaluated. Pollen collected from spathes developed at the middle of flowering stage exhibited the best viability (90%) and germinability (85%) compared to other stages. Pollen viability was greater than 90%, except for 'P8' that exhibited 80%, while, germinability greatly varied among the genotypes. Pollen quality decreased during 4 months of storage upon genotype and temperature, with a minimum reduction at -30 °C followed by 4 °C. Heat shock exposure (33 ± 2 °C) following storage revealed that pollen stored at -30 °C or 4 °C should be used for pollination on the same day of take out to avoid dramatic quality loss. The 'ABD1', an early flowering genotype, proved highest pollen quality both at fresh stage and after storage. While, the 'P3', a late flowering genotype, retained its pollen quality during storage. However, the 'P13' genotype exhibited excellent pollen quality when fresh, but greatly loses germinability during storage.
RESUMO
The promising features of most bacterial celluloses (BC) promote the continuous mining for a cost-effective production approach toward wide and sustainable applications. Herein, cantaloupe peels (CP) were successfully implemented for sustainable BC production. Results indicated that the enzymatically hydrolyzed CP supported the maximum BC production of approximately 3.49 g/L when used as a sole fermentation media. The produced BC was fabricated with polyvinyl alcohol (PVA) and chitosan (Ch), and loaded with green synthesized copper oxide nanoparticles (CuO-NPs) to improve its biological activity. The novel composite showed an antimicrobial activity against several human pathogens such as Staphylococcus aureus, Streptococcus mutans, Salmonella typhimurium, Escherichia coli, and Pseudomonas fluorescens. Furthermore, the new composite revealed a significant in vitro anticancer activity against colon (Caco-2), hepatocellular (HepG-2), and breast (MDA) cancer cells, with low IC50 of 0.48, 0.27, and 0.33 mg/mL for the three cell lines, respectively. On the other hand, the new composite was remarkably safe for human skin fibroblast (HSF) with IC50 of 1.08 mg/mL. Interestingly, the composite membranes exhibited lethal effects against all stages of larval instar and pupal stage compared with the control. In this study, we first report the diverse potential applications of BC/PVA/Ch/CuO-NPs composites based on green synthesized CuO-NPs and sustainably produced BC membrane.
Assuntos
Quitosana , Cucumis melo , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Celulose , Células CACO-2 , Escherichia coli , Bactérias , Quitosana/farmacologia , Álcool de Polivinil , Óxidos , Antibacterianos/farmacologiaRESUMO
Fipronil (FIP) is a highly effective insecticide that has been used in agriculture and veterinary medicine. Its neurotoxic effect to insects and to non-target organisms, after nonintentional exposure, was reported. Many studies were conducted to evaluate FIP effects on mammals. However, slight is known about its effect on the brain stem and diencephalon. The current study was designed to investigate the ability of FIP to induce oxidative stress as a molecular mechanism of FIP neurotoxicity that resulted in apoptosis and neural tissue reactivity in these regions. Ten adult male rats received 10 mg/kg of FIP technical grade by oral gavage, daily for 45 days. Brain stem and diencephalon were processed to examine oxidative stress-induced macromolecular alteration (MDA, PCC and DNA fragmentation). Also, the histopathological assessment and immunoreactivity for caspase-3 (active form), iNOS and GFAP were performed on the thalamus, hypothalamus and medulla oblongata. Our results revealed that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). In addition, significantly increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in the FIP-treated group was noticed (p ≤ 0.05). Moreover, alterations in the histoarchitecture of the neural tissue of these regions were observed. We conclude that FIP can induce oxidative stress, leading to apoptosis and tissue reaction in brain stem and diencephalon.
Assuntos
Apoptose , Tronco Encefálico/patologia , Diencéfalo/patologia , Estresse Oxidativo , Pirazóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Diencéfalo/efeitos dos fármacos , Inseticidas/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , RatosRESUMO
Herein, silver nanoparticles (Ag-NPs) were synthesized using an environmentally friendly approach by harnessing the metabolites of Aspergillus niger F2. The successful formation of Ag-NPs was checked by a color change to yellowish-brown, followed by UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD). Data showed the successful formation of crystalline Ag-NPs with a spherical shape at the maximum surface plasmon resonance of 420 nm with a size range of 3-13 nm. The Ag-NPs showed high toxicity against I, II, III, and IV instar larvae and pupae of Aedes aegypti with LC50 and LC90 values of 12.4-22.9 ppm and 22.4-41.4 ppm, respectively under laboratory conditions. The field assay exhibited the highest reduction in larval density due to treatment with Ag-NPs (10× LC50) with values of 59.6%, 74.7%, and 100% after 24, 48, and 72 h, respectively. The exposure of A. aegypti adults to the vapor of burning Ag-NPs-based coils caused a reduction of unfed individuals with a percentage of 81.6 ± 0.5% compared with the positive control, pyrethrin-based coils (86.1 ± 1.1%). The ovicidal activity of biosynthesized Ag-NPs caused the hatching of the eggs with percentages of 50.1 ± 0.9, 33.5 ± 1.1, 22.9 ± 1.1, and 13.7 ± 1.2% for concentrations of 5, 10, 15, and 20 ppm, whereas Ag-NPs at a concentration of 25 and 30 ppm caused complete egg mortality (100%). The obtained data confirmed the applicability of biosynthesized Ag-NPs to the biocontrol of A. aegypti at low concentrations.
RESUMO
Novel and sustainable chitosan (CS)/activated charcoal (AC) composites were prepared by cross-linking with epichlorohydrin (ECH) to form a porous structure. Different titanium dioxide nanoparticle (TiO2 NPs) concentrations (0, 0.2, 0.4, and 0.8% w/w) were added to enhance the photocatalytic, antibacterial, larvicidal, and pupicidal activities' efficiency toward Rose Bengal (RB) dye and the Culex pipiens. The composites were characterized by FT-IR, XRD, XPS, BET and SEM. The SEM images revealed the porous structure of CS/AC and TiO2 nanoparticles were uniformly distributed in the CS/AC matrix. The degradation of RB dye was used to test the photocatalytic behavior of the composites. Supporting TiO2 on a CS/AC matrix resulted in a significant increase in photocatalytic performance. The antibacterial activities supported by CS/AC/TiO2 NPs were evaluated by bacterial growth inhibition against B. subtilis, S. aureus, E. coli, and P. aeruginosa. The results showed that CS/AC/TiO2 NPs composite has an inhibitory effect and therefore considered antibacterial agents. CS/AC/0.4%TiO2 NPs showed maximum efficacy against larvicidal activity and pupicidal of mosquito vector which recorded 99.00 ± 1.14, 95.00 ± 1.43, and 92.20 ± 2.64 for the first, second, and third larval instars and 66.00 ± 2.39 for pupal mortality, while the repellent activity reported high protection at 82.95 ± 2.99 with 3.24 mg/cm2 dose compared to control DEET.
Assuntos
Quitosana , Nanopartículas , Animais , Catálise , Carvão Vegetal/farmacologia , Quitosana/química , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Titânio/química , Titânio/farmacologiaRESUMO
Herein, the metabolites secreted by brown algae, Cystoseira crinita, were used as biocatalyst for green synthesis of magnesium oxide nanoparticles (MgO-NPs). The fabricated MgO-NPs were characterized using UV-vis spectroscopy, Fourier transforms infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy linked with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed successful formation of crystallographic and spherical MgO-NPs with sizes of 3-18 nm at a maximum surface plasmon resonance of 320 nm. Moreover, EDX analysis confirms the presence of Mg and O in the sample with weight percentages of 54.1% and 20.6%, respectively. Phyco-fabricated MgO-NPs showed promising activities against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans with MIC values ranging between 12.5 and 50 µg mL-1. The IC50 value of MgO-NPs against cancer cell lines (Caco-2) was 113.4 µg mL-1, whereas it was 141.2 µg mL-1 for normal cell lines (Vero cell). Interestingly, the green synthesized MgO-NPs exhibited significant larvicidal and pupicidal activity against Musca domestica. At 10 µg mL-1 MgO-NPs, the highest mortality percentages were 99.0%, 95.0%, 92.2%, and 81.0% for I, II, III instars' larvae, and pupa of M. domestica, respectively, with LC50 values (3.08, 3.49, and 4.46 µg mL-1), and LC90 values (7.46, 8.89, and 10.43 µg mL-1), respectively. Also, MgO-NPs showed repellence activity for adults of M. domestica at 10 µg mL-1 with 63.0%, 77.9%, 84.9%, and 96.8% after 12, 24, 48, and 72 h, respectively.