Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genomics ; 113(1 Pt 2): 493-502, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966860

RESUMO

Fruit development and ripening are essential components of human and animal diets. Fruit ripening is also a vital plant trait for plant shelf life at the commercial level. In the present study, two apple cultivars, Hanfu wild (HC) and Hanfu mutant (HM), were employed for RNA-Sequencing (RNA-Seq) to explore the genes involved in fruit ripening. We retrieved 2642 genes, differentially expressed in HC and HM apple cultivars. Gene ontology (GO) analysis revealed the 569 categories, significantly enriched in biological process, cellular component, and molecular function. KEGG analysis exhibited the plant hormone transduction and flavonoid-anthocyanin biosynthesis pathways, might be involved in the fruit ripening and anthocyanin biosynthesis mechanism. A cluster of 13 and 26 DEGs was retrieved, representing the plant hormones and transcription factors, respectively, that may be important for early ripening in HM genotype. This transcriptome study would be useful for researchers to functionally characterize the DEGs responsible for early ripening.


Assuntos
Antocianinas/biossíntese , Frutas/genética , Malus/genética , Transcriptoma , Antocianinas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Pigmentação
2.
Physiol Plant ; 172(2): 696-706, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33034387

RESUMO

Drought stress is a major limitation in enhancing agricultural productivity to fulfill the food demand for the world's population. Fertigation of plants with a variety of biochemicals is being used to create drought resistance in wheat; however, the previous work has been limited in addressing these issues in plants at different growth stages. Therefore, a greenhouse study was conducted to ameliorate the drought stress in two wheat varieties (Chakwal-50 and Faisalabad-2008) by foliar application of 24-epibrassinolide (EBL). It was evident that drought stress had a negative effect on the growth, photosynthesis, and yield of wheat plants. EBL significantly enhanced the plant growth both under optimal and drought conditions. EBL improved the plant height, spike length, and the dry weights of roots, shoots, and grains as compared to control. Furthermore, the foliar application of EBL positively enhanced the osmolyte accumulation, increased the amounts of photosynthetic pigments, and improved the gas exchange parameters. The EBL minimized the oxidative stress by reducing electrolyte leakage, malondialdehyde, and hydrogen peroxide contents whereas it enhanced the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and peroxidase under drought stress. The EBL significantly improved the level of stress hormones, such as abscisic acid, indol acetic acid, and cytokinin under drought stress. The growth response of Chakwal-50 was higher than that of Faisalabad-2008 when exposed to EBL under drought stress. Overall, the EBL plays a major role in the enhancement of growth, biomass, yield, and decrease in oxidative damage in wheat under drought conditions, however; field investigations with different doses of EBL are needed before any further recommendation.


Assuntos
Antioxidantes , Triticum , Brassinosteroides , Secas , Hormônios , Esteroides Heterocíclicos
3.
Ecotoxicol Environ Saf ; 222: 112510, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273846

RESUMO

Silicon (Si) is the second richest element in the soil and surface of earth crust with a variety of positive roles in soils and plants. Different soil factors influence the Si bioavailability in soil-plant system. The Si involves in the mitigation of various biotic (insect pests and pathogenic diseases) and abiotic stresses (salt, drought, heat, and heavy metals etc.) in plants by improving plant tolerance mechanism at various levels. However, Si-mediated restrictions in heavy metals uptake and translocation from soil to plants and within plants require deep understandings. Recently, Si-based improvements in plant defense system, cell damage repair, cell homeostasis, and regulation of metabolism under heavy metal stress are getting more attention. However, limited knowledge is available on the molecular mechanisms by which Si can reduce the toxicity of heavy metals, their uptake and transfer from soil to plant roots. Thus, this review is focused the following facets in greater detail to provide better understandings about the role of Si at molecular level; (i) how Si improves tolerance in plants to variable environmental conditions, (ii) how biological factors affect Si pools in the soil (iii) how soil properties impact the release and capability of Si to decrease the bioavailability of heavy metals in soil and their accumulation in plant roots; (iv) how Si influences the plant root system with respect to heavy metals uptake or sequestration, root Fe/Mn plaque, root cell wall and compartment; (v) how Si makes complexes with heavy metals and restricts their translocation/transfer in root cell and influences the plant hormonal regulation; (vi) the competition of uptake between Si and heavy metals such as arsenic, aluminum, and cadmium due to similar membrane transporters, and (vii) how Si-mediated regulation of gene expression involves in the uptake, transportation and accumulation of heavy metals by plants and their possible detoxification mechanisms. Furthermore, future research work with respect to mitigation of heavy metal toxicity in plants is also discussed.


Assuntos
Metais Pesados , Poluentes do Solo , Interfase , Metais Pesados/toxicidade , Silício , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
Environ Sci Pollut Res Int ; 31(6): 8985-8999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183551

RESUMO

Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.


Assuntos
Antioxidantes , Elymus , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas , Silício/farmacologia , Elymus/metabolismo , Secas , Estresse Salino , Estresse Fisiológico
5.
Front Plant Sci ; 14: 1149873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950358

RESUMO

The germination of soybean (Glycine max L.) seeds is critically affected by abiotic stresses which resulting in decreasing crop growth and yield. However; little is known about the physiological mechanisms of germination and the potential role of melatonin on soybean seed germination under drought, salt, cold, and heat stresses. Therefore, the current study investigated the possible effects of melatonin to enhance germination indices and other physiological attributes by alleviating the harmful impacts of these stresses during germination. Seeds of soybean were pre-treated (seed priming) with melatonin at MT1 (20 µmol L-1), MT2 (50 µmol L-1), MT3 (100 µmol L-1), MT4 (200 µmol L-1), and MT5 (300 µmol L-1) and exposed to the four stresses (drought at PEG 15%, salt at 150mM, cold at 10 °C, and heat at 30 °C) . It was noted that MT1 (20 µmol L-1), MT2 (50 µmol L-1), and MT3 (100 µmol L-1) remarkably improved the germination potential, germination rate, radical length, and biomass under given stresses. Furthermore, MT1, MT2, and MT3 progressively increased the proline to minimize the impact of drought, salt, cold, and heat stresses. In addition, all stresses significantly induced oxidative damage however, salt (150 mM NaCl) and heat (30 °C) stresses highly increased the malondialdehyde content (MDA) and hydrogen peroxide (H2O2) as compared to drought (PEG 15%) and cold (10 °C) stresses. Moreover, MT2 and MT3 significantly enhanced the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) to reduce the oxidative damage in soybean seeds during the germination. Overall, melatonin at 50 µmol L-1 and 100 µmol L-1 considerably mitigated the harmful impacts of drought, salt, cold, and heat stress by enhancing germination and other physiological mechanisms of soybean. This study could provide bases to enhance the melatonin-mediated tolerance of soybean and other related crops at early growth stages when exposed to abiotic stresses.

6.
Environ Pollut ; 328: 121658, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075919

RESUMO

Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.


Assuntos
Melatonina , Pennisetum , Poluentes do Solo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , Pennisetum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila A , Solo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/toxicidade
7.
Environ Pollut ; 318: 120863, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526056

RESUMO

Pearl millet (Pennisetum glaucum L.) is a highly nutritive-value summer-annual forage crop used for hay, silage, grazing, and green chop. However, abiotic stresses including salinity negatively affect its growth and productivity. Furthermore, the nanotechnology is attaining greater consideration to reduce the impact of environmental stresses in plants. In the present study, transcriptome responses of silver nanoparticles (AgNPs) in pearl millet under salinity were investigated. The treatments were given as Control, NaCl (250 mM), AgNPs (20 mg/L), and NaCl + AgNPs to pearl millet seedlings after thirteen days of seed sowing. After 1 h of given treatments, leaf samples were collected and subjected to physio-chemical examination and transcriptome analyses. Salt stress increased the hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and proline as compared to other treatments. In addition, the combined applications of NaCl + AgNPs ameliorated the oxidative damage by increasing antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, RNA sequencing data showed 6016 commonly annotated Differentially Expressed Transcripts (DETs) among various treated combinations. Among them, 427 transcripts were upregulated, and 136 transcripts were downregulated at nanoparticles vs control, 1469 upregulated and 1182 downregulated at salt vs control, 494 upregulated and 231 downregulated at salt + nanoparticles vs control, 783 upregulated and 523 downregulated at nanoparticles vs salt. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that Mitogen-activated protein kinase (MAPK) signaling pathway, biosynthesis of secondary metabolites, and plant hormonal signal transduction pathway were the enriched among all identified pathways. In addition, Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) showed that salinity up regulated the relative expression of DETs in pearl millet while, AgNPs optimized their expression that are associated with various molecular and metabolic functions. Overall, AgNPs treatments effectively improved the morphology, physiology, biochemistry, and gene expression pattern under salinity which could be attributed to positive impacts of AgNPs on pearl millet.


Assuntos
Nanopartículas Metálicas , Pennisetum , Pennisetum/genética , Pennisetum/metabolismo , Prata/toxicidade , Prata/metabolismo , Nanopartículas Metálicas/toxicidade , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/toxicidade , Cloreto de Sódio/metabolismo , Estresse Salino , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Antioxidantes/metabolismo
8.
Front Plant Sci ; 13: 849618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419021

RESUMO

Pearl millet (Pennisetum glaucum L.) is a vital staple food and an important cereal crop used as food, feed, and forage. It can withstand heat and drought due to the presence of some unique genes; however, the mechanism of salt stress has been missing in pearl millet until now. Therefore, we conducted a comparative transcriptome profiling to reveal the differentially expressed transcripts (DETs) associated with salt stress in pearl millet at different time points, such as 1, 3, and 7 h, of salt treatment. The physiological results suggested that salt stress significantly increased proline, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) in pearl millet at 1, 3, and 7 h of salt treatment. In addition, pearl millet plants regulated the activities of superoxide dismutase, catalase, and peroxidase to lessen the impact of salinity. The transcriptomic results depicted that salt stress upregulated and downregulated the expression of various transcripts involved in different metabolic functions. At 1 and 7 h of salt treatment, most of the transcripts were highly upregulated as compared to the 3 h treatment. Moreover, among commonly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the mitogen-activated protein kinase (MAPK) signaling pathway and peroxisome pathway were significantly enriched. The DETs related to hormone signaling (auxins, ethylene, gibberellin, and abscisic acid), kinases, protein modifications, and degradation were also identified, depicting the possible role of hormones and kinases to enhance plant tolerance against salt stress. Furthermore, the transcription factors, such as ethylene-responsive element binding factors (ERF), basic helix-loop-helix (bHLH), HMG box-containing protein (HBP), MADS, myeloblastosis (MYB), and WRKY, were predicted to significantly regulate different transcripts involved in salt stress responses at three different time points. Overall, this study will provide new insights to better understand the salt stress regulation mechanisms in pearl millet to improve its resistance against salinity and to identify new transcripts that control these mechanisms in other cereals.

9.
Chemosphere ; 294: 133642, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35063550

RESUMO

The occurrence of contaminants such as heavy metals in an aqueous environment has become a global concern. In the present study, a bio-filter was designed to eliminate heavy metals from river wastewater contaminated with industrial effluents. Moreover, we analyzed simple tap water, bio-filtered water, and unfiltered river wastewater and measured the concentrations of different heavy metals in the samples, such as cadmium (Cd), nickel (Ni), lead (Pb), and copper (Cu). The current experiment explored irrigation effects of three water regimes (tap water, bio-filtered water, and wastewater) on two wheat (Triticum aestivum L.) varieties (NARC-2009 and NARC-2011). Results of the present study indicated that wastewater negatively influenced the growth parameters and photosynthetic contents along with a significant increase in oxidative damage in terms of electrolyte leakage (EL) (50 and 61%), hydrogen peroxide (H2O2) (52 and 61 µmol/g), and malondialdehyde (MDA) (16 and 17.7 µmol/g) contents in NARC-2009 and NARC-2011 respectively. However, bio-filtered water positively regulated the growth profile, activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), total soluble sugars, amino acids, total protein, and proline contents in wheat as compared with untreated wastewater. In addition, bio-filtered water had significant impacts on the reduction of Cd, Ni, Pb, and Cu concentrations in roots, shoots, and grains of both wheat varieties as compared to wastewater. The concentrations (mg/kg) of Cd (15 and 18), Ni (35 and 57), Pb (5 and 7), and Cu (69 and 72) in roots, Cd (5 and 6), Ni (24 and 43), Pb (3 and 4), and Cu (16 and 19) in shoots, and Cd (0.7 and 1.0), Ni (11 and 26), Pb (2 and 3), and Cu (1.6 and 1.5) in grains of NARC-2009 and NARC-2011 were found under river wastewater treatment. Overall, wastewater treatment through bio-filtration process is an effective strategy for the reduction of toxic elements in bio-filtered water and their accumulation by plants.


Assuntos
Metais Pesados , Poluentes do Solo , Peróxido de Hidrogênio/metabolismo , Metais Pesados/análise , Rios , Poluentes do Solo/análise , Triticum/metabolismo , Águas Residuárias/química
10.
Environ Sci Pollut Res Int ; 29(60): 89823-89833, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344893

RESUMO

Nanotechnology is one of the promising techniques and shares wide ranges of applications almost in every field of life. Nanomaterials are getting continuous attractions due to specific physical and chemical properties and being applied as multifunctional material. The use of nanomaterials/nanoparticles in agriculture sector for crop improvement and protection against various environmental threats have attained greater significance. Size and nature of nanoparticles, mode of application, environmental conditions, rhizospheric and phyllospheric environment, and plant species are major factors that influence the action of nanoparticles. The mode or method of nanoparticle applications to plants is attaining greater attentions. Recently, different methods for nanoparticle applications (seed priming, foliar, and root application) are being used to improve crop growth. It is of quite worth that which method is suitable for nanoparticle application, and how nanoparticles can possibly translocate to various plant tissues from root to shoot or vice versa. These information's are poorly understood and need more investigations to explore the comprehensive mechanism by which nanoparticles make their possible entry through different plant organs and how they transport to regulate various physiological and molecular functions in plant cells. Therefore, this study comprehensively provides the knowledge of nanoparticles uptake via seed priming, foliar exposure, and root application, and their possible translocation mechanism within plants influenced by various factors that has not clearly presented. This study will provide new insights to find out an actual uptake and translocation mechanism of nanoparticles that may help researchers to develop nanoparticle-based new strategies for plants to cope with various environmental challenges. This study also focuses on different soil factors or above ground factors that are involved in nanoparticles uptake and translocation and ultimately their functioning in plants.


Assuntos
Nanotecnologia , Projetos de Pesquisa , Sementes
11.
Environ Pollut ; 286: 117389, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058445

RESUMO

Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Humanos , Raízes de Plantas/química , Plantas , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Environ Sci Pollut Res Int ; 28(11): 13712-13724, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33200384

RESUMO

Salt stress in agricultural soils is a global issue and little information is available about the efficiency of silver nanoparticles (AgNPs) in plants under salt stress. The aim of current study was to assess the efficacy of AgNPs in improving plant growth and reducing the salt-induced damages in pearl millet. The exposure of pearl millet plants grown in pots containing soil to different doses of salinity (0, 120, 150 mM) and AgNPs (0, 10, 20 and 30 mM) significantly influenced the morphology, physiology and yield-related attributes. Salt stress remarkably increased the concentration of sodium (Na) and chloride (Cl) in different organs of pearl millet plants. This led to increase the enhancement of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content and caused severe oxidative damage by augmenting the activities of antioxidant enzymes. The obvious decrease in plant growth, height, dry biomass of root and shoot, chlorophylls and carotenoid contents was observed in salt-stressed plants which ultimately reduced the yield of plants. The AgNPs remarkably improved the plant growth by reducing oxidative stress and Na and Cl uptake by salt-stressed plants. The AgNPs were also found to maintain the ionic balance of cell (Na+, K+ and Na+/K+ ratio). The AgNPs improved the superoxide dismutase, catalase activities and decreased the peroxidase activity while reduced the H2O2 and MDA contents in plants under salt stress. Overall, AgNPs increased the plant height, yield, and photosynthesis of salt-stressed plants in a dose-additive manner.


Assuntos
Nanopartículas Metálicas , Pennisetum , Animais , Antioxidantes , Cloretos , Cloro , Peróxido de Hidrogênio , Estágios do Ciclo de Vida , Raízes de Plantas , Salinidade , Prata , Sódio
13.
Plants (Basel) ; 9(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664464

RESUMO

Bioavailability of cadmium (Cd) metal in the soils due to the scarcity of good quality water and industrial waste could be the major limiting factor for the growth and yield of crops. Therefore, there is a need for a prompt solution to the Cd toxicity, to fulfill increasing food demand resulting from growing world population. Today, a variable range of plant growth promoting rhizobacteria (PGPR) is being used at a large scale in agriculture, to reduce the risk of abiotic stresses on plants and increase crop productivity. The objective of this study was to evaluate the efficacy of Bacillus siamensis in relieving the Cd induced damage in two wheat varieties (i.e., NARC-2009 and NARC-2011) grown in Cd spiked soil at different concentrations (0, 20, 30, 50 mg/kg). The plants under Cd stress accumulated more Cd in the roots and shoots, resulting in severe oxidative stress, evident by an increase in malondialdehyde (MDA) content. Moreover, a decrease in cell osmotic status, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were also observed in wheat plants under Cd stress. As a result, the Cd exposed plants showed a reduction in growth, tissue biomass, photosynthetic pigments, membrane stability, total soluble sugars, and amino acids, in comparison to control plants. The extent of damage was observed to be higher with an increase in Cd concentration. However, the inoculation of wheat with B. siamensis improved plant growth, reduced oxidative stress, and enhanced the activities of antioxidant enzymes in both wheat varieties. B. siamensis amendment brought a considerable improvement in every parameter determined with respect to Cd stress. The response of both wheat varieties on exposure to B. siamensis was positively enhanced, whereas NARC-2009 accumulated less Cd compared to NARC-2011, which indicated a higher tolerance to Cd stress mediated by B. siamensis inoculation. Overall, the B. siamensis reduced the Cd toxicity in wheat plants through the augmentation of the antioxidant defense system and sugars production.

14.
Plants (Basel) ; 9(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272796

RESUMO

Salinity is a major abiotic stress which limits crop production, especially under rainfed conditions. Selenium (Se), as an important micronutrient, plays a vital role in mitigating detrimental effects of different abiotic stresses. The objective of this research was to examine the effect of Se fertilization on black gram (Vigna mungo) under salt stress. Our results showed that salt stress (100 mM NaCl) in leaves significantly induced oxidative damage and caused a decline in relative water content, chlorophyll (Chl), stomatal conductance (gs), photochemical efficiency (Fv/Fm), sucrose, and reducing sugars. A low dose of Se (1.5 ppm) significantly reduced hydrogen peroxide content, malondialdehyde formation, cell membrane damage, and also improved antioxidative enzyme activities, including superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase under salt stress. Se-treated plants exhibited higher Chl, gs, Fv/Fm, sucrose, and reducing sugars than untreated plants in response to salt stress. In addition, Se application enhanced Se uptake and reduced Na+ uptake, but Cl- remained unaffected. Our results indicated that a low dose of Se effectively alleviated salt damage via inhibition of Na+ uptake and enhanced antioxidant defense resulting in a significant decrease in oxidative damage, and maintained gaseous exchange and PS II function for sucrose and reducing sugars accumulation in black gram.

15.
Plant Physiol Biochem ; 156: 221-232, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979796

RESUMO

Abiotic stresses in plants reduce crop growth and productivity. Nanoparticles (NPs) are effectively involved in the physiochemical processes of crop plants, especially under the abiotic stresses; whereas, less information is available regarding the role of AgNPs in salt-stressed plants. Therefore, in the current study, we investigated the effects of seed priming with commercially available silver nanoparticles (AgNPs) (size range between 50 and 100 nm) on plant morphology, physiology, and antioxidant defence system of pearl millet (Pennisetum glaucum L.) under different concentrations of salt stress (0, 120 and 150 mM NaCl). The seed priming with AgNPs at different levels (0, 10, 20 and 30 mM) mitigated the adverse impacts of salt stress and improved plant growth and defence system. The results demonstrated that salt-stressed plants had restricted growth and a noticeable decline in fresh and dry weight. Salt stress enhanced the oxidative damage by excessive production of hydrogen peroxide (H2O2), malondialdehyde (MDA) contents in pearl millet leaves. However, seed priming with AgNPs significantly improved the plant height growth related attributes, relative water content, proline contents and ultimately fresh and dry weight at 20 mM AgNPs alone or with salt stress. The AgNPs reduced the oxidative damage by improving antioxidant enzyme activities in the pearl millet leaves under salt stress. Furthermore, sodium (Na+) and Na+/K+ ratio was decreased and potassium (K+) increased by NPs, and the interactive effects between salt and AgNPs significantly impacted the total phenolic and flavonoid content in pearl millet. It was concluded that seed priming with AgNPs could enhance salinity tolerance in crop plants by enhancing physiological and biochemical responses. This might boost global crop production in salt-degraded lands.


Assuntos
Nanopartículas Metálicas , Estresse Oxidativo , Pennisetum/efeitos dos fármacos , Estresse Salino , Sementes/efeitos dos fármacos , Prata/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Íons , Pennisetum/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31248040

RESUMO

: A rapid and continuous growth of silver nanoparticles (AgNPs) via their precursor "silver nitrate" (AgNO3) has increased their environmental risk because of their unsafe discharge into the surrounding environment. Both have damaging effects on plants and induce oxidative stress. In the present study, differential responses in the morpho-physiological and biochemical profiles of P. glaucum (L.) seedlings exposed to various doses of AgNPs and AgNO3 were studied. Both have forms of Ag accelerated the reactive oxygen species (ROS) production, which adversely affected the membrane stability as a result of their enhanced accumulation, and resulted in a significant reduction in growth, that is, root length, shoot length, fresh and dry biomass, and relative water content. AgNO3 possessed a higher degree of toxicity owing to its higher accumulation than AgNPs, and induced changes in the antioxidants' enzyme activity: superoxide dismutase (SOD), peroxidase (POD), catalases (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) activity, as well as proline content, total phenolic, and total flavonoids contents (TFCs) under all tested treatments (mM). A decline in photosynthetic pigments such as total chlorophyll content and carotenoid content and alterations in quantum yield (Fv/Fm), photochemical (qP), and non-photochemical quenching (NPQ) indicated the blockage of the electron transport chain (ETC), which led to a significant inhibition of photosynthesis. Interestingly, seedlings exposed to AgNPs showed less damaging effects on P. glaucum (L.) seedlings, resulting in relatively lower oxidative stress in contrast to AgNO3. Our results revealed that AgNO3 and AgNPs possessed differential phytotoxic effects on P. glaucum (L.) seedlings, including their mechanism of uptake, translocation, and action. The present findings may be useful in phytotoxic research to design strategies that minimize the adverse effects of AgNPs and AgNO3 on crops, especially in the agriculture sector.


Assuntos
Nanopartículas Metálicas/análise , Pennisetum , Plântula/efeitos dos fármacos , Prata/farmacologia , Antioxidantes/farmacologia , Catalase/metabolismo , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Nitrato de Prata/farmacologia , Superóxido Dismutase/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA