Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 55(15): 7527-34, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27404805

RESUMO

We present the synthesis and characterization of alkali metal salts of the new tetraanionic, tetrapodal ligand 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (A4[PY(CO2)4], A = Li(+), Na(+), K(+), and Cs(+)), via deprotection of the neutral tetrapodal ligand tetraethyl 2,2'-(pyridine-2,6-diyl)bis(2-methylmalonate) (PY(CO2Et)4). The [PY(CO2)4](4-) ligand is composed of an axial pyridine and four equatorial carboxylate groups and must be kept at or below 0 °C to prevent decomposition. Exposing it to a number of divalent first-row transition metals cleanly forms complexes to give the series K2[(PY(CO2)4)M(H2O)] (M = Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+)). The metal complexes were comprehensively characterized via single-crystal X-ray diffraction, (1)H NMR and UV-vis absorption spectroscopy, and cyclic voltammetry. Crystal structures reveal that [PY(CO2)4](4-) coordinates in a pentadentate fashion to allow for a nearly ideal octahedral coordination geometry upon binding an exogenous water ligand. Additionally, depending on the nature of the charge-balancing countercation (Li(+), Na(+), or K(+)), the [(PY(CO2)4)M(H2O)](2-) complexes can assemble in the solid state to form one-dimensional channels filled with water molecules. Aqueous electrochemistry performed on [(PY(CO2)4)M(H2O)](2-) suggested accessible trivalent oxidation states for the Fe, Co, and Ni complexes, and the trivalent Co(3+) species [(PY(CO2)4)Co(OH)](2-) could be isolated via chemical oxidation. The successful synthesis of the [PY(CO2)4](4-) ligand and its transition metal complexes illustrates the still-untapped versatility within the tetrapodal ligand family, which may yet hold promise for the isolation of more reactive and higher-valent metal complexes.

2.
Inorg Chem ; 55(21): 11216-11229, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27715031

RESUMO

A RuII-pentadentate polypyridyl complex [RuII(κ-N5-bpy2PYMe)Cl]+ (1+, bpy2PYMe = 1-(2-pyridyl)-1,1-bis(6-2,2'-bipyridyl)ethane) and its aqua derivative [RuII(κ-N5-bpy2PYMe)(H2O)]2+ (22+) were synthesized and characterized by experimental and computational methods. In MeOH, 1+ exists as two isomers in different proportions, cis (70%) and trans (30%), which are interconverted under thermal and photochemical conditions by a sequence of processes: chlorido decoordination, decoordination/recoordination of a pyridyl group, and chlorido recoordination. Under oxidative conditions in dichloromethane, trans-12+ generates a [RuIII(κ-N4-bpy2PYMe)Cl2]+ intermediate after the exchange of a pyridyl ligand by a Cl- counterion, which explains the trans/cis isomerization observed when the system is taken back to Ru(II). On the contrary, cis-12+ is in direct equilibrium with trans-12+, with absence of the κ-N4-bis-chlorido RuIII-intermediate. All these equilibria were modeled by density functional theory calculations. Interestingly, the aqua derivative is obtained as a pure trans-[RuII(κ-N5-bpy2PYMe)(H2O)]2+ isomer (trans-22+), while the addition of a methyl substituent to a single bpy of the pentadentate ligand leads to the formation of a single cis isomer for both chlorido and aqua derivatives [RuII(κ-N5-bpy(bpyMe)PYMe)Cl]+ (3+) and [RuII(κ-N5-bpy(bpyMe)PYMe)(H2O)]2+ (42+) due to the steric constraints imposed by the modified ligand. This system was also structurally and electrochemically compared to the previously reported [RuII(PY5Me2)X]n+ system (X = Cl, n = 1 (5+); X = H2O, n = 2 (62+)), which also contains a κ-N5-RuII coordination environment, and to the newly synthesized [RuII(PY4Im)X]n+ complexes (X = Cl, n = 1 (7+); X = H2O, n = 2 (82+)), which possess an electron-rich κ-N4C-RuII site due to the replacement of a pyridyl group by an imidazolic carbene.

3.
J Am Chem Soc ; 134(40): 16646-53, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22967268

RESUMO

Dye-sensitized solar cells (DSCs) are an attractive renewable energy technology currently under intense investigation. In recent years, one area of major interest has been the exploration of alternatives to the classical iodide/triiodide redox shuttle, with particular attention focused on cobalt complexes with the general formula [Co(L)(n)](2+/3+). We introduce a new approach to designing redox mediators that involves the application of [Co(PY5Me(2))(MeCN)](2+/3+) complexes, where PY5Me(2) is the pentadentate ligand, 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine. It is shown, by X-ray crystallography, that the axial acetonitrile (MeCN) ligand can be replaced by more strongly coordinating Lewis bases (B) to give complexes with the general formula [Co(PY5Me(2))(B)](2+/3+), where B = 4-tert-butylpyridine (tBP) or N-methylbenzimidazole (NMBI). These commonly applied DSC electrolyte components are used for the first time to fine-tune the potential of the redox couple to the requirements of the dye through coordinative interactions with the Co(II/III) centers. Application of electrolytes based on the [Co(PY5Me(2))(NMBI)](2+/3+) complex in combination with a commercially available organic sensitizer has enabled us to attain DSC efficiencies of 8.4% and 9.2% at a simulated light intensity of 100% sun (1000 W m(-2) AM1.5 G) and at 10% sun, respectively, higher than analogous devices applying the [Co(bpy)(3)](2+/3+) redox couple, and an open circuit voltage (V(oc)) of almost 1.0 V at 100% sun for devices constructed with the tBP complex.


Assuntos
Cobalto/química , Corantes/química , Complexos de Coordenação/química , Bases de Lewis/química , Energia Solar , Cristalografia por Raios X , Técnicas Eletroquímicas , Ligantes , Modelos Moleculares , Oxirredução , Espectroscopia Fotoeletrônica , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA