Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32513803

RESUMO

Reports of transmissible colistin resistance show the importance of comprehensive colistin resistance surveillance. Recently, a new allele of the mobile colistin resistance (mcr) gene family designated mcr-9, which shows variation in genetic context and colistin susceptibility, was reported. We tested over 100 Salmonella enterica and Escherichia coli isolates with mcr-9 from the National Antimicrobial Resistance Monitoring System (NARMS) in the United States for their susceptibility to colistin and found that every isolate was susceptible, with an MIC of ≤1 µg/ml. Long-read sequencing of 12 isolates revealed mcr-9 on IncHI plasmids that were either independent or integrated into the chromosome. Overall, these results demonstrate that caution is necessary when determining the clinical relevance of new resistance genes.


Assuntos
Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella/efeitos dos fármacos , Salmonella/genética , Estados Unidos
2.
Artigo em Inglês | MEDLINE | ID: mdl-27993845

RESUMO

Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, helping us to better identify and track the genetic mechanisms underlying phenotypic resistance. Previous studies have demonstrated high correlations between phenotypic resistance and the presence of known resistance determinants. However, there has never been a large-scale assessment of how well resistance genotypes correspond to specific MICs. We performed antimicrobial susceptibility testing and WGS of 1,738 nontyphoidal Salmonella strains to correlate over 20,000 MICs with resistance determinants. Using these data, we established what we term genotypic cutoff values (GCVs) for 13 antimicrobials against Salmonella For the drugs we tested, we define a GCV as the highest MIC of isolates in a population devoid of known acquired resistance mechanisms. This definition of GCV is distinct from epidemiological cutoff values (ECVs or ECOFFs), which currently differentiate wild-type from non-wild-type strains based on MIC distributions alone without regard to genetic information. Due to the large number of isolates involved, we observed distinct MIC distributions for isolates with different resistance gene alleles, including for ciprofloxacin and tetracycline, suggesting the potential to predict MICs based on WGS data alone.


Assuntos
Antibacterianos/farmacologia , Genoma Bacteriano , Genótipo , Salmonella/efeitos dos fármacos , Salmonella/genética , Aminoglicosídeos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia , Farmacogenética , Salmonella/crescimento & desenvolvimento
3.
Artigo em Inglês | MEDLINE | ID: mdl-28483962

RESUMO

We sequenced the genomes of 10 Salmonella enterica serovar Infantis isolates containing blaCTX-M-65 obtained from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine National Antimicrobial Resistance Monitoring System (NARMS) surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes [aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1] located in two distinct sites of a megaplasmid (∼316 to 323 kb) similar to that described in a blaCTX-M-65-positive S Infantis isolate from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high-quality SNPs, indicating a high likelihood that strains from humans, chickens, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the blaCTX-M-65-positive S Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the blaCTX-M-65 gene and the pESI (plasmid for emerging S Infantis)-like megaplasmid from S Infantis in the United States, and it illustrates the importance of applying a global One Health human and animal perspective to combat antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Salmonella enterica/efeitos dos fármacos , beta-Lactamases/metabolismo , Animais , Bovinos , Galinhas , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética , Salmonella enterica/enzimologia , Estados Unidos , beta-Lactamases/genética
4.
Food Microbiol ; 62: 289-297, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889161

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been detected in retail meats, although large-scale studies are scarce. We conducted a one-year survey in 2010-2011 within the framework of the National Antimicrobial Resistance Monitoring System. Among 3520 retail meats collected from eight U.S. states, 982 (27.9%) contained S. aureus and 66 (1.9%) were positive for MRSA. Approximately 10.4% (107/1032) of S. aureus isolates, including 37.2% (29/78) of MRSA, were multidrug-resistant (MDRSA). Turkey had the highest MRSA prevalence (3.5%), followed by pork (1.9%), beef (1.7%), and chicken (0.3%). Whole-genome sequencing was performed for all 66 non-redundant MRSA. Among five multilocus sequence types identified, ST8 (72.7%) and ST5 (22.7%) were most common and livestock-associated MRSA ST398 was assigned to one pork isolate. Eleven spa types were represented, predominately t008 (43.9%) and t2031 (22.7%). All four types of meats harbored t008, whereas t2031 was recovered from turkey only. The majority of MRSA (84.8%) possessed SCCmec IV and 62.1% harbored Panton-Valentine leukocidin. Pulsed-field gel electrophoresis showed that all ST8 MRSA belonged to the predominant human epidemic clone USA300, and others included USA100 and USA200. We conclude that a diverse MRSA population was present in U.S. retail meats, albeit at low prevalence.


Assuntos
Microbiologia de Alimentos , Carne/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Bovinos , Farmacorresistência Bacteriana Múltipla , Exotoxinas/genética , Genes Bacterianos , Genoma Bacteriano , Humanos , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Staphylococcus aureus/classificação , Suínos , Turquia , Estados Unidos
5.
Antimicrob Agents Chemother ; 60(4): 2567-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26856840

RESUMO

We conducted a retrospective study of 2,149 clinicalSalmonellastrains to help document the historical emergence of antimicrobial resistance. There were significant increases in resistance to older drugs, including ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline, which were most common inSalmonella entericaserotype Typhimurium. An increase in multidrug resistance was observed for each decade since the 1950s. These data help show howSalmonellaevolved over the past 6 decades, after the introduction of new antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/genética , Ampicilina/farmacologia , Cloranfenicol/farmacologia , Evolução Molecular , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Vigilância em Saúde Pública , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Salmonella typhimurium/classificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Sorogrupo , Estreptomicina/farmacologia , Sulfametoxazol/farmacologia , Tetraciclina/farmacologia , Estados Unidos/epidemiologia
6.
Antimicrob Agents Chemother ; 60(9): 5515-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381390

RESUMO

Laboratory-based in vitro antimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidal Salmonella and correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred forty Salmonella of 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n = 59) in the 104 human isolates than in the 536 retail meat isolates (n = 36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum ß-lactamases (ESBLs) (blaCTX-M1 and blaSHV2a) in retail meat isolates of Salmonella in the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidal Salmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella/efeitos dos fármacos , Salmonella/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genótipo , Humanos , Carne/microbiologia , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Fenótipo , Estados Unidos , beta-Lactamases/genética , beta-Lactamas/farmacologia
7.
Appl Environ Microbiol ; 82(20): 6223-6232, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520817

RESUMO

Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S Enteritidis clinical strains and S Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE: This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S Enteritidis strains clustered separately from most of S Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world.


Assuntos
Doenças das Aves/microbiologia , Charadriiformes/microbiologia , Genoma Bacteriano , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Animais , Doenças das Aves/transmissão , Chile , Humanos , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/transmissão , Infecções por Salmonella/transmissão , Salmonelose Animal/transmissão , Salmonella enteritidis/isolamento & purificação , Sorogrupo
8.
Food Microbiol ; 46: 627-634, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475337

RESUMO

Eleven Salmonella enterica serovar Bovismorbificans isolates obtained from the U.S. District of Columbia during a 2011 hummus-associated foodborne outbreak were compared to 12 non-outbreak isolates. All isolates from the outbreak demonstrated a single PFGE pattern that was distinctly different from other isolates of S. Bovismorbificans as recorded in the PulseNet Database. Results from molecular analyses of the hummus-associated S. Bovismorbificans isolates indicate that the isolates from the outbreak were unique and have acquired an 80-90 kb plasmid. The impact of this study is that the information gained will add and expand our knowledge of diversity of the S. Bovismorbificans serovar.


Assuntos
Doenças Transmitidas por Alimentos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Surtos de Doenças , District of Columbia/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Plasmídeos/genética , Infecções por Salmonella/epidemiologia , Salmonella enterica/classificação , Salmonella enterica/genética
9.
Foodborne Pathog Dis ; 10(8): 684-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23692074

RESUMO

The presence and antimicrobial susceptibility of foodborne pathogens and indicator organisms in animal feed are not well understood. In this study, a total of 201 feed ingredient samples (animal byproducts, n=122; plant byproducts, n=79) were collected in 2002 and 2003 from representative rendering plants and the oilseed (or cereal grain) industry across the United States. The occurrence and antimicrobial susceptibility of four bacterial genera (Salmonella, Campylobacter, Escherichia coli, and Enterococcus) were determined. Salmonella isolates were further characterized by serotyping and pulsed-field gel electrophoresis (PFGE). None of the samples yielded Campylobacter or E. coli O157:H7, whereas Salmonella, generic E. coli, and Enterococcus were present in 22.9%, 39.3%, and 86.6% of samples, respectively. A large percentage (47.8%) of Salmonella-positive samples harbored two serovars, and the vast majority (88.4%) of Enterococcus isolates were E. faecium. Animal byproducts had a significantly higher Salmonella contamination rate (34.4%) than plant byproducts (5.1%) (p<0.05). Among 74 Salmonella isolates recovered, 27 serovars and 55 PFGE patterns were identified; all were pan-susceptible to 17 antimicrobials tested. E. coli isolates (n=131) demonstrated similar susceptibility to these antimicrobials except for tetracycline (15.3% resistance), sulfamethoxazole (7.6%), streptomycin (4.6%), ampicillin (3.8%), and nalidixic acid (1.5%). Enterococcus isolates (n=362) were also resistant to five of 17 antimicrobials tested, ranging from 1.1% to penicillin to 14.6% to tetracycline. Resistance rates were generally higher among isolates recovered from animal byproducts. Taken together, our findings suggest that diverse populations of Salmonella, E. coli, and Enterococcus are commonly present in animal feed ingredients, but antimicrobial resistance is not common. Future large-scale studies to monitor these pathogenic and indicator organisms in feed commodities is warranted.


Assuntos
Ração Animal/microbiologia , Campylobacter/isolamento & purificação , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Carne/microbiologia , Salmonella/isolamento & purificação , Animais , Campylobacter/efeitos dos fármacos , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Eletroforese em Gel de Campo Pulsado , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Contaminação de Alimentos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Sorotipagem , Estados Unidos
10.
Emerg Infect Dis ; 18(5): 741-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22515968

RESUMO

We conducted a retrospective study of Escherichia coli isolates recovered from human and food animal samples during 1950-2002 to assess historical changes in antimicrobial drug resistance. A total of 1,729 E. coli isolates (983 from humans, 323 from cattle, 138 from chickens, and 285 from pigs) were tested for susceptibility to 15 antimicrobial drugs. A significant upward trend in resistance was observed for ampicillin (p<0.001), sulfonamide (p<0.001), and tetracycline (p<0.001). Animal strains showed increased resistance to 11/15 antimicrobial agents, including ampicillin (p<0.001), sulfonamide (p<0.01), and gentamicin (p<0.001). Multidrug resistance (≥3 antimicrobial drug classes) in E. coli increased from 7.2% during the 1950s to 63.6% during the 2000s. The most frequent co-resistant phenotype observed was to tetracycline and streptomycin (29.7%), followed by tetracycline and sulfonamide (29.0%). These data describe the evolution of resistance after introduction of new antimicrobial agents into clinical medicine and help explain the range of resistance in modern E. coli isolates.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Galinhas , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Humanos , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/microbiologia , Estados Unidos/epidemiologia
11.
Food Microbiol ; 32(2): 371-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986203

RESUMO

The prevalence and characteristics of non-O157 Shiga toxin-producing Escherichia coli (STEC) in retail ground meat from the Washington D.C. area were investigated in this study. STEC from 480 ground beef and pork samples were identified using PCR screening followed by colony hybridization. The STEC isolates were serogrouped and examined for the presence of virulence genes (stx1, stx2, eae and hlyA), and antimicrobial susceptibility. PFGE was used to identify the clonal relationships of STEC isolates, and PCR-RFLP was employed to determine stx subtypes. In addition, the cytotoxicity of STEC isolates was determined using a Vero cell assay. STEC were identified in 12 (5.2%) of 231 ground pork and 13 (5.2%) of 249 ground beef samples. Among 32 STEC isolates recovered from the 25 samples, 12 (37.5%) carried stx2dact and 7 (21.9%) carried hlyA, but none carried eae. Nine isolates were identified as O91, and 17 (53.1%) isolates were resistant to two or more antimicrobials. Verotoxicity was detected in 26 (81.3%) of the STEC isolates. Thus, the retail ground meat was contaminated with a heterogeneous population of non-O157 STEC, some of which were potential human pathogens.


Assuntos
Contaminação de Alimentos/análise , Carne/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Qualidade de Produtos para o Consumidor , District of Columbia , Farmacorresistência Bacteriana , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Suínos
12.
Microorganisms ; 10(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336145

RESUMO

This cross-sectional study determined the serovars, antimicrobial resistance genes, and virulence factors of Salmonella isolated from hatcheries, broiler farms, processing plants, and retail outlets in Trinidad and Tobago. Salmonella in silico serotyping detected 23 different serovars where Kentucky 20.5% (30/146), Javiana 19.2% (28/146), Infantis 13.7% (20/146), and Albany 8.9% (13/146) were the predominant serovars. There was a 76.0% (111/146) agreement between serotyping results using traditional conventional methods and whole-genome sequencing (WGS) in in silico analysis. In silico identification of antimicrobial resistance genes conferring resistance to aminoglycosides, cephalosporins, peptides, sulfonamides, and antiseptics were detected. Multidrug resistance (MDR) was detected in 6.8% (10/146) of the isolates of which 100% originated from broiler farms. Overall, virulence factors associated with secretion systems and fimbrial adherence determinants accounted for 69.3% (3091/4463), and 29.2% (1302/4463) counts, respectively. Ten of 20 isolates of serovar Infantis (50.0%) showed MDR and contained the blaCTX-M-65 gene. This is the first molecular characterization of Salmonella isolates detected along the entire broiler production continuum in the Caribbean region using WGS. The availability of these genomes will help future source tracking during epidemiological investigations associated with Salmonella foodborne outbreaks in the region and worldwide.

13.
Front Microbiol ; 13: 928509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814688

RESUMO

In 2019, the United States National Antimicrobial Resistance Monitoring System (NARMS) surveyed raw salmon, shrimp, and tilapia from retail grocery outlets in eight states to assess the prevalence of bacterial contamination and antimicrobial resistance (AMR) in the isolates. Prevalence of the targeted bacterial genera ranged among the commodities: Salmonella (0%-0.4%), Aeromonas (19%-26%), Vibrio (7%-43%), Pseudomonas aeruginosa (0.8%-2.3%), Staphylococcus (23%-30%), and Enterococcus (39%-66%). Shrimp had the highest odds (OR: 2.8, CI: 2.0-3.9) of being contaminated with at least one species of these bacteria, as were seafood sourced from Asia vs. North America (OR: 2.7; CI: 1.8-4.7) and Latin America and the Caribbean vs. North America (OR: 1.6; CI: 1.1-2.3) and seafood sold at the counter vs. sold frozen (OR: 2.1; CI: 1.6-2.9). Isolates exhibited pan-susceptibility (Salmonella and P. aeruginosa) or low prevalence of resistance (<10%) to most antimicrobials tested, with few exceptions. Seafood marketed as farm-raised had lower odds of contamination with antimicrobial resistant bacteria compared to wild-caught seafood (OR: 0.4, CI: 0.2-0.7). Antimicrobial resistance genes (ARGs) were detected for various classes of medically important antimicrobials. Clinically relevant ARGs included carbapenemases (bla IMI-2, bla NDM-1) and extended spectrum ß-lactamases (ESBLs; bla CTX-M-55). This population-scale study of AMR in seafood sold in the United States provided the basis for NARMS seafood monitoring, which began in 2020.

14.
J Food Prot ; 84(10): 1749-1759, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015113

RESUMO

ABSTRACT: Little is known about the prevalence of antimicrobial-resistant (AMR) bacteria in veal meat in the United States. We estimated the prevalence of bacterial contamination and AMR in various veal meats collected during the 2018 U.S. National Antimicrobial Resistance Monitoring System (NARMS) survey of retail outlets in nine states and compared the prevalence with the frequency of AMR bacteria from other cattle sources sampled for NARMS. In addition, we identified genes associated with resistance to medically important antimicrobials and gleaned other genetic details about the resistant organisms. The prevalence of Campylobacter, Salmonella, Escherichia coli, and Enterococcus in veal meats collected from grocery stores in nine states was 0% (0 of 358), 0.6% (2 of 358), 21.1% (49 of 232), and 53.5% (121 of 226), respectively, with ground veal posing the highest risk for contamination. Both Salmonella isolates were resistant to at least one antimicrobial agent as were 65.3% (32 of 49) of E. coli and 73.6% (89 of 121) of Enterococcus isolates. Individual drug and multiple drug resistance levels were significantly higher (P < 0.05) in E. coli and Enterococcus from retail veal than in dairy cattle ceca and retail ground beef samples from 2018 NARMS data. Whole genome sequencing was conducted on select E. coli and Salmonella from veal. Cephalosporin resistance (blaCMY and blaCTX-M), macrolide resistance (mph), and plasmid-mediated quinolone resistance (qnr) genes and gyrA mutations were found. We also identified heavy metal resistance genes ter, ars, mer, fieF, and gol and disinfectant resistance genes qac and emrE. An stx1a-containing E. coli was also found. Sequence types were highly varied among the nine E. coli isolates that were sequenced. Several plasmid types were identified in E. coli and Salmonella, with the majority (9 of 11) of isolates containing IncF. This study illustrates that veal meat is a carrier of AMR bacteria.


Assuntos
Proteínas de Escherichia coli , Carne Vermelha , Animais , Antibacterianos/farmacologia , Antiporters , Bovinos , Farmacorresistência Bacteriana , Escherichia coli , Contaminação de Alimentos/análise , Macrolídeos , Carne , Testes de Sensibilidade Microbiana , Estados Unidos
15.
Appl Environ Microbiol ; 76(6): 1709-17, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080990

RESUMO

To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx(1) and stx(2), 2 positive for stx(1), and 10 positive for stx(2). The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx(2) genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Carne/microbiologia , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Chlorocebus aethiops , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Escherichia coli Enteropatogênica/classificação , Células Epiteliais/microbiologia , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Sorotipagem , Escherichia coli Shiga Toxigênica/classificação , Estados Unidos , Células Vero , Fatores de Virulência/genética
16.
J Food Prot ; 83(5): 849-857, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913707

RESUMO

ABSTRACT: Between 2002 and 2017, the National Antimicrobial Resistance Monitoring System (NARMS) recovered 5,803 Salmonella isolates from retail meat samples of chicken parts, ground turkey, pork chops, and ground beef collected in 21 states. NARMS tested these isolates for susceptibility to amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, gentamicin, nalidixic acid, streptomycin, tetracycline, trimethoprim-sulfamethoxazole (cotrimoxazole), sulfisoxazole, and ciprofloxacin. To evaluate possible geographic differences in the prevalence and distribution of antimicrobial-resistant Salmonella, we used a chi-square test of association. We used the U.S. Department of Agriculture Office of Investigation, Enforcement and Audit map for the regional subdivisions. A significant association was found between region, Salmonella prevalence, and Salmonella resistance to all tested antimicrobials except cotrimoxazole, streptomycin, ciprofloxacin, and azithromycin. The Northeast region was the most influential contributor to overall prevalence and resistance to most of the antimicrobials tested, and Salmonella Typhimurium was the serotype driving these associations. Although this work did not elucidate the reasons for differences in prevalence and antimicrobial resistance for Salmonella Typhimurium strains in the Northeast, lack of certain resistance mechanisms in Salmonella strains from other regions was ruled out by analysis of 484 sequences from the 485 isolates resistant to ampicillin, sulfonamides, and tetracycline.


Assuntos
Farmacorresistência Bacteriana Múltipla , Carne , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inocuidade dos Alimentos , Carne/microbiologia , Testes de Sensibilidade Microbiana , Prevalência
17.
Microorganisms ; 8(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679763

RESUMO

The role animal food plays in the introduction of antimicrobial-resistant bacteria into the human food chain is not well understood. We conducted an analysis of 1025 samples (647 pet food and 378 animal feed) collected across the United States during 2005-2011 for two indicator organisms (Escherichia coli and Enterococcus spp.). The overall prevalence ranged from 12.5% for E. coli to 45.2% for Enterococcus spp., and 11.2% of samples harbored both organisms. Regardless of bacterial genus, animal feed had significantly higher prevalence than pet food (p < 0.001). A general downward trend in prevalence was observed from 2005 to 2009 followed by an upward trend thereafter. Among E. coli isolates (n = 241), resistance was highest to tetracycline (11.2%) and below 5% for fourteen other antimicrobials. Among Enterococcus spp. isolates (n = 1074), Enterococcus faecium (95.1%) was the predominant species. Resistance was most common to tetracycline (30.1%) and ciprofloxacin (10.7%), but below 10% for thirteen other antimicrobials. Multidrug-resistant organisms were observed among both E. coli and Enterococcus spp. isolates at 3.3%. Compared to National Antimicrobial Resistance Monitoring System (NARMS) 2011 retail meat and animal data, the overall resistance for both organisms was much lower in animal food. These findings help establish a historic baseline for the prevalence and antimicrobial resistance among U.S. animal food products and future efforts may be needed to monitor changes over time.

18.
J Food Prot ; 72(10): 2198-201, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19833046

RESUMO

Salmonella continues to cause significant foodborne outbreaks, best illustrated with recent outbreaks associated with peanut butter, raw tomatoes, and serrano peppers. To ascertain the likely source of the outbreak, bacterial typing is essential to this process. While PCR has become an important detection tool for pathogens in foods, PCR can also identify strain differences by targeting gene(s) or sequences exhibiting polymorphisms or variability in its distribution within the bacterial population. Over 2,500 Salmonella enterica serovars identified based on antigenic differences in lipopolysaccharide and flagellin have been identified to date. We developed an allelotyping PCR scheme that identifies the O and H alleles associated with S. enterica serovars Enteritidis, Hadar, Heidelberg, Typhimurium, and others, with the same antigen alleles but in different O- and H-allele combinations (e.g., S. enterica Kentucky), and validated it as a screen to identify samples contaminated with these Salmonella serovars. We correctly identified poultry samples containing S. enterica serovars Enteritidis, Kentucky, and Typhimurium from our multiplex screen of primary enrichments of environmental drag swabs. PCR agreed well (kappa values = 0.81 to 1.0) with conventional serotyping methods used to type salmonellae isolated from primary enrichment. Coupled with Salmonella-specific PCR, such as invA, this allelotyping PCR could prove useful in the identification of Salmonella and specific S. enterica serovars present in foods or the environment and could decrease the time and cost associated with conventional serotyping methods.


Assuntos
Antígenos de Bactérias/genética , Antígenos O/genética , Reação em Cadeia da Polimerase/métodos , Salmonella enterica/isolamento & purificação , Alelos , Técnicas de Tipagem Bacteriana , Contaminação de Alimentos/análise , Reação em Cadeia da Polimerase/normas , Salmonella enterica/classificação , Salmonella enterica/genética , Salmonella enteritidis/classificação , Salmonella enteritidis/genética , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/classificação , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Sensibilidade e Especificidade , Sorotipagem
19.
Microb Drug Resist ; 25(8): 1238-1249, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31149890

RESUMO

Salmonella enterica serovar Dublin is a host-adapted serotype associated with typhoidal disease in cattle. While rare in humans, it usually causes severe illness, including bacteremia. In the United States, Salmonella Dublin has become one of the most multidrug-resistant (MDR) serotypes. To understand the genetic elements that are associated with virulence and resistance, we sequenced 61 isolates of Salmonella Dublin (49 from sick cattle and 12 from retail beef) using the Illumina MiSeq and closed 5 genomes using the PacBio sequencing platform. Genomic data of eight human isolates were also downloaded from NCBI (National Center for Biotechnology Information) for comparative analysis. Fifteen Salmonella pathogenicity islands (SPIs) and a spv operon (spvRABCD), which encodes important virulence factors, were identified in all 69 (100%) isolates. The 15 SPIs were located on the chromosome of the 5 closed genomes, with each of these isolates also carrying 1 or 2 plasmids with sizes between 36 and 329 kb. Multiple antimicrobial resistance genes (ARGs), including blaCMY-2, blaTEM-1B, aadA12, aph(3')-Ia, aph(3')-Ic, strA, strB, floR, sul1, sul2, and tet(A), along with spv operons were identified on these plasmids. Comprehensive antimicrobial resistance genotypes were determined, including 17 genes encoding resistance to 5 different classes of antimicrobials, and mutations in the housekeeping gene (gyrA) associated with resistance or decreased susceptibility to fluoroquinolones. Together these data revealed that this panel of Salmonella Dublin commonly carried 15 SPIs, MDR/virulence plasmids, and ARGs against several classes of antimicrobials. Such genomic elements may make important contributions to the severity of disease and treatment failures in Salmonella Dublin infections in both humans and cattle.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Carne Vermelha/microbiologia , Salmonella/efeitos dos fármacos , Salmonella/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Bovinos , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Salmonelose Animal/microbiologia , Estados Unidos , Fatores de Virulência/genética
20.
Front Microbiol ; 10: 562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984125

RESUMO

Loop-mediated isothermal amplification (LAMP) has gained wide popularity in the detection of Salmonella in foods owing to its simplicity, rapidity, and robustness. This multi-laboratory validation (MLV) study aimed to validate a Salmonella LAMP-based method against the United States Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method in a representative animal food matrix (dry dog food). Fourteen independent collaborators from seven laboratories in the United States and Canada participated in the study. Each collaborator received two sets of 24 blind-coded dry dog food samples (eight uninoculated; eight inoculated at a low level, 0.65 MPN/25 g; and eight inoculated at a high level, 3.01 MPN/25 g) and initiated the testing on the same day. The MLV study used an unpaired design where different test portions were analyzed by the LAMP and BAM methods using different preenrichment protocols (buffered peptone water for LAMP and lactose broth for BAM). All LAMP samples were confirmed by culture using the BAM method. BAM samples were also tested by LAMP following lactose broth preenrichment (paired samples). Statistical analysis was carried out by the probability of detection (POD) per AOAC guidelines and by a random intercept logistic regression model. Overall, no significant differences in POD between the Salmonella LAMP and BAM methods were observed with either unpaired or paired samples, indicating the methods were comparable. LAMP testing following preenrichment in buffered peptone water or lactose broth also resulted in insignificant POD differences (P > 0.05). The MLV study strongly supports the utility and applicability of this rapid and reliable LAMP method in routine regulatory screening of Salmonella in animal food.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA