Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Conserv Biol ; : e14196, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811718

RESUMO

Because host species tend to harbor multiple parasitic species, coinfection in a host is common. The chytrid fungus Batrachochytrium dendrobatidis (Bd) and the viruses in the genus Ranavirus (Rv) are responsible for the decline of amphibians worldwide. Despite wide geographical co-occurrence and the serious conservation problem that coinfection with these pathogens could represent, little is known about their possible synergistic interactions and effects in a host community. We investigated the occurrence and associations between these two pathogens in an amphibian community after Rv-driven disease outbreaks were detected in four populations of the Iberian ribbed newt (Pleurodeles waltl) in northwestern Spain. We collected tissue samples from amphibians and fish and estimated Bd and Rv infection loads by qPCR. A few months after the most recent mass mortality event, Rv infection parameters at the affected sites decreased significantly or were lower than such registered at the sites where no outbreaks were recorded. Both pathogens were simultaneously present in almost all sites, but coinfection in a single host was rare. Our findings suggest that the co-occurrence of Bd and Rv does not predict adverse outcomes (e.g., enhanced susceptibility of hosts to one pathogen due to the presence or infection intensity of the other) following an outbreak. Other variables (such as species identity or site) were more important than infection with a pathogen in predicting the infection status and severity of infection with the other pathogen. Our results highlight the importance of host-specific and environmental characteristics in the dynamics of infections, coinfection patterns, and their impacts.


Relaciones entre dos patógenos en una comunidad anfibia que experimentó mortalidad masiva Resumen La coinfección es común en especies hospederas ya que estas especies tienden a albergar muchas especies parasíticas. El hongo quitridio Batrachochytrium dendrobatidis (Bd) y los virus del género Ranavirus (Rv) son responsables de la declinación mundial de anfibios. A pesar de la amplia co-ocurrencia geográfica y el problema serio de conservación que podría representar la coinfección con estos patógenos, se conoce muy poco sobre sus posibles interacciones sinérgicas y sus efectos en una comunidad hospedera. Investigamos la incidencia y las asociaciones entre estos dos patógenos en una comunidad anfibia después de que se detectaron brotes de enfermedades causados por Rv en cuatro poblaciones del tritón estriado ibérico (Pleurodeles waltl) en el noroeste de España. Recolectamos muestras de tejido de anfibios y peces y estimamos la carga infecciosa de Bd y Rv con una qPCR. Unos meses después del evento de mortalidad masiva más reciente, los parámetros de infección de Rv en los sitios afectados disminuyeron significativamente o fueron más bajos que los registrados en sitios sin brotes. Ambos patógenos estuvieron presentes de forma simultánea en casi todos los sitios, pero fue raro encontrar la coinfección en un solo hospedero. Nuestros descubrimientos sugieren que la coocurrencia de Bd y Rv no pronostica resultados adversos (aumento en la susceptibilidad de los hospederos a un patógeno debido a la presencia o intensidad de infección del otro patógeno) después de un brote. Otras variables, como la identidad de la especie o el sitio, fueron más importantes que la infección con un patógeno en la predicción del estado de infección y la severidad de la infección con otro patógeno. Nuestros resultados resaltan la importancia de las características ambientales y aquellas específicas del hospedero en las dinámicas de infección, los patrones de coinfección y sus impactos.

2.
Glob Chang Biol ; 21(3): 1078-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25363272

RESUMO

Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure and establishment success.


Assuntos
Ecossistema , Espécies Introduzidas , Tartarugas/fisiologia , Animais , Comércio , Espécies Introduzidas/economia , Modelos Biológicos , América do Norte , Risco , Especificidade da Espécie
3.
Dis Aquat Organ ; 113(1): 75-80, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25667339

RESUMO

The importance of disease-mediated invasions and the role of parasite spillover as a substantial threat to the conservation of global biodiversity are now well known. Although competition between invasive sliders Trachemys scripta elegans and indigenous European turtles has been extensively studied, the impact of this invasive species on diseases affecting native populations is poorly known. During winter 2012-2013 an unusual event was detected in a population of Emys orbicularis (Linnaeus, 1758) inhabiting a pond system in Galicia (NW Spain). Most turtles were lethargic and some had lost mobility of limbs and tail. Necropsies were performed on 11 turtles that were found dead or dying at this site. Blood flukes belonging to the species Spirorchis elegans were found inhabiting the vascular system of 3 turtles, while numerous fluke eggs were trapped in the vascular system, brain, lung, heart, liver, kidney, spleen, and/or gastrointestinal tissues of all necropsied animals. Characteristic lesions included miliary egg granulomas, which were mostly found on serosal surfaces, particularly of the small intestine, as well as endocarditis, arteritis, and thrombosis. The most probable cause of death in the 3 turtle specimens which were also examined histologically was a necrotic enteritis with secondary bacterial infection associated with a massive egg embolism. The North American origin of S. elegans, the absence of prior recorded epizootics in the outbreak area, and the habitual presence of its type host, the highly invasive red-eared slider, in this area suggest a new case of parasite spillover resulting in a severe emerging disease.


Assuntos
Surtos de Doenças/veterinária , Trematódeos/isolamento & purificação , Infecções por Trematódeos/veterinária , Tartarugas , Animais , Estações do Ano , Espanha , Trematódeos/classificação , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/mortalidade , Infecções por Trematódeos/parasitologia
4.
J Fungi (Basel) ; 7(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436183

RESUMO

The recent introduction of the chytrid fungus Batrachochytrium salamandrivorans into northeastern Spain threatens salamander diversity on the Iberian Peninsula. We assessed the current epidemiological situation with extensive field sampling of urodele populations. We then sought to delineate priority regions and identify conservation units for the Iberian Peninsula by estimating the susceptibility of Iberian urodeles using laboratory experiments, evidence from mortality events in nature and captivity and inference from phylogeny. None of the 1395 field samples, collected between 2015 and 2021 were positive for Bsal and no Bsal-associated mortality events were recorded, in contrast to the confirmed occurrence of Bsal outbreak previously described in 2018. We classified five of eleven Iberian urodele species as highly susceptible, predicting elevated mortality and population declines following potential Bsal emergence in the wild, five species as intermediately susceptible with variable disease outcomes and one species as resistant to disease and mortality. We identified the six conservation units (i.e., species or lineages within species) at highest risk and propose priority areas for active disease surveillance and field biosecurity measures. The magnitude of the disease threat identified here emphasizes the need for region-tailored disease abatement plans that couple active disease surveillance to rapid and drastic actions.

5.
PLoS One ; 15(7): e0236803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730306

RESUMO

Ranaviruses are agents of disease, mortality and population declines in ectothermic vertebrates and emergences have been repeatedly linked to human activities. Ranaviruses in the common midwife toad ranavirus lineage are emerging in Europe. They are known to be severe multi-host pathogens of amphibians and can also cause disease in reptiles. Recurrent outbreaks of ranavirus disease and mortality affecting three species have occurred at a small reservoir in north-west Spain but no data were available on occurrence of the pathogen in the other amphibian and reptile species present or at adjacent sites. We sampled nine species of amphibians and reptiles at the reservoir and nearby sites and screened for ranavirus presence using molecular methods. Our results show infection with ranavirus in all nine species, including first reports for Hyla molleri, Pelophylax perezi, Rana iberica, and Podarcis bocagei. We detected ranavirus in all four local sites and confirmed mass mortality incidents involving Lissotriton boscai and Triturus marmoratus were ongoing. The reservoir regularly hosts water sports tournaments and the risks of ranavirus dispersal through the translocation of contaminated equipment are discussed.


Assuntos
Anfíbios/virologia , Infecções por Vírus de DNA/epidemiologia , Ranavirus/isolamento & purificação , Répteis/virologia , Animais , Infecções por Vírus de DNA/virologia , Prevalência , Fatores de Risco , Espanha/epidemiologia
6.
Curr Biol ; 24(21): 2586-91, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25438946

RESUMO

The emergence of infectious diseases with a broad host range can have a dramatic impact on entire communities and has become one of the main threats to biodiversity. Here, we report the simultaneous exploitation of entire communities of potential hosts with associated severe declines following invasion by a novel viral pathogen. We found two phylogenetically related, highly virulent viruses (genus Ranavirus, family Iridoviridae) causing mass mortality in multiple, diverse amphibian hosts in northern Spain, as well as a third, relatively avirulent virus. We document host declines in multiple species at multiple sites in the region. Our work reveals a group of pathogens that seem to have preexisting capacity to infect and evade immunity in multiple diverse and novel hosts, and that are exerting massive impacts on host communities. This report provides an exceptional record of host population trends being tracked in real time following emergence of a wildlife disease and a striking example of a novel, generalist pathogen repeatedly crossing the species barrier with catastrophic consequences at the level of host communities.


Assuntos
Anfíbios/virologia , Interações Hospedeiro-Patógeno , Ranavirus/fisiologia , Animais , Ecossistema , Filogenia , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA