Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 858-860, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878011

RESUMO

The global spread of monkeypox virus has raised concerns over the establishment of novel enzootic reservoirs in expanded geographic regions. We demonstrate that although deer mice are permissive to experimental infection with clade I and II monkeypox viruses, the infection is short-lived and has limited capability for active transmission.


Assuntos
Monkeypox virus , Mpox , Animais , Monkeypox virus/genética , Mpox/epidemiologia , Peromyscus , América do Norte/epidemiologia
2.
Antiviral Res ; : 105995, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243894

RESUMO

While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100,000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA