RESUMO
Aging is a major risk factor in amyotrophic lateral sclerosis (ALS) and other adult-onset neurodegenerative disorders. Whereas young neurons are capable of buffering disease-causing stresses, mature neurons lose this ability and degenerate over time. We hypothesized that the resilience of young motor neurons could be restored by re-expression of the embryonic motor neuron selector transcription factors ISL1 and LHX3. We found that viral re-expression of ISL1 and LHX3 reactivates aspects of the youthful gene expression program in mature motor neurons and alleviates key disease-relevant phenotypes in the SOD1G93A mouse model of ALS. Our results suggest that redeployment of lineage-specific neuronal selector transcription factors can be an effective strategy to attenuate age-dependent phenotypes in neurodegenerative disease.
RESUMO
Neurons born in the embryo can undergo a protracted period of maturation lasting well into postnatal life. How gene expression changes are regulated during maturation and whether they can be recapitulated in cultured neurons remains poorly understood. Here, we show that mouse motor neurons exhibit pervasive changes in gene expression and accessibility of associated regulatory regions from embryonic till juvenile age. While motifs of selector transcription factors, ISL1 and LHX3, are enriched in nascent regulatory regions, motifs of NFI factors, activity-dependent factors, and hormone receptors become more prominent in maturation-dependent enhancers. Notably, stem cell-derived motor neurons recapitulate ~40% of the maturation expression program in vitro, with neural activity playing only a modest role as a late-stage modulator. Thus, the genetic maturation program consists of a core hardwired subprogram that is correctly executed in vitro and an extrinsically-controlled subprogram that is dependent on the in vivo context of the maturing organism.
Assuntos
Neurônios Motores , Neurogênese , Animais , Hormônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Neurônios Motores/metabolismo , Neurogênese/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.