Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Euro Surveill ; 25(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32975184

RESUMO

Rabies is enzootic in over one hundred countries worldwide. In the European Union/European Economic Area (EU/EEA), the vast majority of human rabies cases are travellers bitten by dogs in rabies-enzootic countries, mostly in Asia and Africa. Thus, EU/EEA travellers visiting rabies enzootic countries should be aware of the risk of being infected with the rabies virus when having physical contact with mammals. They should consider pre-exposure vaccination following criteria recommended by the World Health Organization and if unvaccinated, immediately seek medical attention in case of bites or scratches from mammals. As the majority of the EU/EEA countries are free from rabies in mammals, elimination of the disease (no enzootic circulation of the virus and low number of imported cases) has been achieved by 2020. However, illegal import of potentially infected animals, mainly dogs, poses a risk to public health and might threaten the elimination goal. Additionally, newly recognised bat lyssaviruses represent a potential emerging threat as the rabies vaccine may not confer protective immunity. To support preparedness activities in EU/EEA countries, guidance for the assessment and the management of the public health risk related to rabies but also other lyssaviruses, should be developed.


Assuntos
Lyssavirus , Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Infecções por Rhabdoviridae/prevenção & controle , Viagem , Zoonoses , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Cães , Europa (Continente)/epidemiologia , União Europeia , Humanos , Raiva/epidemiologia , Raiva/transmissão , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/transmissão , Medição de Risco
2.
EFSA J ; 22(4): e8755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638555

RESUMO

Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.

3.
EFSA J ; 21(12): e8480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099051

RESUMO

All European Union (EU) Member States (MSs) are required to implement surveillance for avian influenza (AI) in poultry and wild birds and (i) to notify the outbreaks, when relevant and (ii) to report the results to the responsible authority. In addition, Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland) also implement ongoing surveillance programmes to monitor occurrences of avian influenza viruses (AIVs) in poultry and wild birds. EFSA received a mandate from the European Commission to collate, validate, analyse and summarise the data resulting from these AI surveillance programmes in an annual report. The present report summarises the results of the surveillance activities carried out in MSs, Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland) in 2022. Overall, the 31 reporting countries (RCs) sampled 22,171 poultry establishments (PEs) during the 2022 surveillance activity: 18,490 PEs were sampled for serological testing and 3775 were sampled for virological testing. Some PEs were therefore sampled for both type of analytical methods. Out of the 18,490 PEs sampled for serological testing, 15 (0.08%) were seropositive for influenza A(H5) viruses. Out of the 3775 PEs sampled for virological testing, 74 PEs (1.96%) were positive to the virological assay for influenza A(H5) viruses. Seropositive PEs were found in four RCs (Belgium, Poland, Spain and Sweden) and as in previous years, the highest percentages of seropositive PEs were found in PEs raising breeding geese and waterfowl game birds. Out of these 15 seropositive PEs, 3 also tested positive by polymerase chain reaction (PCR) for influenza A (H5) viruses - 2 for highly pathogenic avian influenza virus (HPAIV) and 1 low pathogenic avian influenza (LPAI) (H5N3). In relation to the virological surveys, 10 RCs (32%) out of the 31 reported the detection of A (H5) viruses in 74 PEs, covering 12 different poultry categories. More specifically, 54 reported HPAIV A(H5N1), 17 HPAIV (H5N8), 2 AIV (H5N1) with unknown virus pathogenicity and 1 low pathogenic avian influenza (LPAI) (H5N3). Additionally, six PEs tested positive for undefined AIVs in three RCs. A total of 32,143 wild birds were sampled, with 4163 (12.95%) wild birds testing positive for HPAIVs by PCR, from 25 RCs. In contrast to previous years, out of the 4163 wild birds testing positive for HPAIv, subtype A(H5N1) virus was the main influenza A virus subtype identified among the wild bird testing positive for HPAIVs (3942; 95%). In addition, RCs also reported 984 wild birds testing positive for low pathogenic avian influenza (LPAI). Out of those, for 660 (67%) it was ascertained that the subtype was non-A(H5/H7); 260 (26%) wild birds tested positive for LPAIv of A(H5 or H7) subtypes and the remaining 64 (7%) LPAI viruses were belonging to other H-subtypes.

4.
EFSA J ; 21(1): e07786, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698491

RESUMO

Between October 2021 and September 2022 Europe has suffered the most devastating highly pathogenic avian influenza (HPAI) epidemic with a total of 2,520 outbreaks in poultry, 227 outbreaks in captive birds, and 3,867 HPAI virus detections in wild birds. The unprecedent geographical extent (37 European countries affected) resulted in 50 million birds culled in affected establishments. In the current reporting period, between 10 September and 2 December 2022, 1,163 HPAI virus detections were reported in 27 European countries in poultry (398), captive (151) and wild birds (613). A decrease in HPAI virus detections in colony-breeding seabirds species and an increase in the number of detections in waterfowl has been observed. The continuous circulation of the virus in the wild reservoir has led to the frequent introduction of the virus into poultry populations. It is suspected that waterfowl might be more involved than seabirds in the incursion of HPAI virus into poultry establishments. In the coming months, the increasing infection pressure on poultry establishments might increase the risk of incursions in poultry, with potential further spread, primarily in areas with high poultry densities. The viruses detected since September 2022 (clade 2.3.4.4b) belong to eleven genotypes, three of which have circulated in Europe during the summer months, while eight represent new genotypes. HPAI viruses were also detected in wild and farmed mammal species in Europe and North America, showing genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N1) detections in humans in Spain, one A(H5N1), one A(H5N6) and one A(H9N2) human infection in China as well as one A(H5) infection without NA-type result in Vietnam were reported, respectively. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.

5.
EFSA J ; 21(8): e08173, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533748

RESUMO

Vector or reservoir species of five mollusc diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Mollusc species on or in which Mikrocytos mackini, Perkinsus marinus, Bonamia exitiosa, Bonamia ostreae and Marteilia refringens were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, this studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected molluscs was not found, these were defined as reservoir. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir mollusc species during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that M. mackini, P. marinus, B. exitiosa B. ostreae and M. refringens will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or at aquaculture establishments or through contaminated water supply can possibly transmit these pathogens. For transmission of M. refringens, the presence of an intermediate host, a copepod, is necessary.

6.
EFSA J ; 21(8): e08172, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533749

RESUMO

Vector or reservoir species of three diseases of crustaceans listed in the Animal Health Law were identified based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Crustacean species on or in which Taura syndrome virus (TSV), Yellow head virus (YHV) or White spot syndrome virus (WSSV) were identified, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected crustaceans was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that WSSV, TSV and YHV will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or aquaculture establishments or by water supply can possibly transmit WSSV, TSV and YHV.

7.
EFSA J ; 21(10): e08326, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37908448

RESUMO

Bacterial kidney disease (BKD) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to BKD. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to this assessment, BKD can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (66-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that BKD does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-5%, 33-66% and 33-66% probability of meeting the criteria, respectively) but meets the criteria in Sections 4 and 5 (Categories D and E; 66-90% and 66-90% probability of meeting the criteria, respectively). The animal species to be listed for BKD according to Article 8 criteria are provided.

8.
EFSA J ; 20(9): e07554, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177389

RESUMO

European Union (EU) Member States (MSs) are required to carry out surveillance for avian influenza (AI) in poultry and wild birds and notify the results to the responsible authority. In addition, Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland) also implement ongoing surveillance programmes to monitor incursions of avian influenza viruses (AIVs) in poultry and wild birds. EFSA received a mandate from the European Commission to collate, validate, analyse and summarise the data resulting from these AI surveillance programmes in an annual report. The present report summarises the results of the surveillance activities carried out in MSs and the aforementioned countries in 2021. Overall, 24,290 poultry establishments (PEs) were sampled, of which 27 were seropositive for influenza A(H5) and 4 for A(H7) viruses. Seropositive PEs were found in 10 MSs and, as per previous years, the highest percentages of seropositive PEs were found in establishments raising waterfowl game birds and breeding geese. Out of these 31 seropositive PEs, 3 tested positive by polymerase chain reaction (PCR) for influenza A(H5) viruses: 1 for highly pathogenic avian influenza virus (HPAIV), 1 for low pathogenic avian influenza virus (LPAIV) and 1 with unknown virus pathogenicity. In addition, 16 countries reported PCR test results from 1,858 PEs which did not correspond to the follow-up testing of a positive serology event (e.g. in some PEs, PCR tests were used for screening). Sixty-five of these PEs in 10 MSs were found positive for AIVs. Apart from poultry, 31,382 wild birds were sampled, with 2,314 wild birds testing positive for HPAIVs by PCR. Twenty-two countries reported HPAIV-positive wild birds and most positive samples were identified as highly pathogenic avian influenza (HPAI) A(H5N8) virus. In addition, 328 wild birds tested positive for LPAIVs of the A(H5/H7) subtypes and 362 wild birds tested positive for non-A(H5/H7) subtype AIVs.

9.
EFSA J ; 20(6): e07350, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35662806

RESUMO

EFSA received a mandate from the European Commission to assess the risks related to a possible reduction of the waiting period after rabies antibody titration test to 30 days compared with 90 days of the current EU legislation, for dogs moving from certain non-EU countries to the EU. This Scientific Report assessed the probability of introduction of rabies into the EU through commercial and non-commercial movements of vaccinated dogs with a positive titration test (≥ 0.5 IU/mL) if the waiting period decreases from 90 to 30 days. Assuming that all the legal requirements are complied with, the risk of transmission of rabies through the movement of a vaccinated dog is related to the risk of introducing an animal incubating rabies that was infected before the day of vaccination or shortly after vaccination but before the development of immunity (21 days post-vaccination). Using published data on the incubation period for experimental and field cases in dogs and considering the rabies incidence data in certain countries, the aggregated probability for the annual introduction of rabies through dogs was assessed. Considering the uncertainty related to the duration of the incubation period, the number of imported dogs, and the disease incidence in some countries it was concluded with a 95% certainty that the maximum number of rabies-infected imported dogs complying with the regulations in a 20-year period could increase from 5 to 20 when decreasing the waiting period from 90 to 30 days. Nevertheless, the potential impact of even a small increase in probability means the risk is increased for a region like the EU where rabies has long been a focus for eradication, to protect human and animal health.

10.
EFSA J ; 20(4): e07289, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386927

RESUMO

Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.

11.
EFSA J ; 20(1): e07122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079292

RESUMO

The 2020-2021 avian influenza epidemic with a total of 3,777 reported highly pathogenic avian influenza (HPAI) detections and approximately 22,900,000 affected poultry birds in 31 European Countries appears to be one of the largest HPAI epidemics that has ever occurred in Europe. Between 15 May and 15 September 2021, 162 HPAI virus detections were reported in 17 EU/EEA countries and the UK in poultry (51), in wild (91) and captive birds (20). The detections in poultry were mainly reported by Kosovo (20), Poland (17) and Albania (6). HPAI virus was detected during the summer months in resident wild bird populations mainly in northern Europe. The data presented in this report indicates that HPAI virus is still circulating in domestic and wild bird populations in some European countries and that the epidemic is not over yet. Based on these observations, it appears that the persistence of HPAI A(H5) in Europe continues to pose a risk of further virus incursions in domestic bird populations. Furthermore, during summer, HPAI viruses were detected in poultry and several wild bird species in areas in Russia that are linked to key migration areas of wild waterbirds; this is of concern due to the possible introduction and spread of novel virus strains via wild birds migrating to the EU countries during the autumn from the eastern breeding to the overwintering sites. Nineteen different virus genotypes have been identified so far in Europe and Central Asia since July 2020, confirming a high propensity for this virus to undergo reassortment events. Since the last report, 15 human infections due to A(H5N6) HPAI and five human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus have been reported from China. Some of these cases were caused by a virus with an HA gene closely related to the A(H5) viruses circulating in Europe. The viruses characterised to date retain a preference for avian-type receptors; however, the reports of transmission events of A(H5) viruses to mammals and humans in Russia, as well as the recent A(H5N6) human cases in China may indicate a continuous risk of these viruses adapting to mammals. The risk of infection for the general population in the EU/EEA is assessed as very low, and for occupationally exposed people low, with large uncertainty due to the high diversity of circulating viruses in the bird populations.

12.
EFSA J ; 20(8): e07415, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949938

RESUMO

The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest epidemic so far observed in Europe, with a total of 2,398 outbreaks in poultry, 46 million birds culled in the affected establishments, 168 detections in captive birds, and 2,733 HPAI events in wild birds in 36 European countries. Between 16 March and 10 June 2022, 1,182 HPAI virus detections were reported in 28 EU/EEA countries and United Kingdom in poultry (750), and in wild (410) and captive birds (22). During this reporting period, 86% of the poultry outbreaks were secondary due to between-farm spread of HPAI virus. France accounted for 68% of the overall poultry outbreaks, Hungary for 24% and all other affected countries for less than 2% each. Most detections in wild birds were reported by Germany (158), followed by the Netherlands (98) and the United Kingdom (48). The observed persistence of HPAI (H5) virus in wild birds since the 2020-2021 epidemic wave indicates that it may have become endemic in wild bird populations in Europe, implying that the health risk from HPAI A(H5) for poultry, humans, and wildlife in Europe remains present year-round, with the highest risk in the autumn and winter months. Response options to this new epidemiological situation include the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection measures in the different poultry production systems. Medium to long-term strategies for reducing poultry density in high-risk areas should also be considered. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. HPAI A(H5) viruses were also detected in wild mammal species in Canada, USA and Japan, and showed genetic markers of adaptation to replication in mammals. Since the last report, four A(H5N6), two A(H9N2) and two A(H3N8) human infections were reported in China and one A(H5N1) in USA. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.

13.
EFSA J ; 20(1): e07070, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079289

RESUMO

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures were assessed for several diseases, with this opinion covering the assessment of control measures for Rift Valley Fever (RVF). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Different risk-based sampling procedures based on clinical visits and laboratory testing are assessed in case of outbreak suspicion, granting animal movements and for repopulation purposes. The length of monitoring period and minimum duration of measures to be implemented in the restricted zones as defined in the Delegated Regulation (30 days) are considered effective for the investigation and control of suspected and confirmed RVF outbreaks, as well as the size of protection and surveillance zone of 20 and 50 km, respectively, which are assessed as sufficient to contain disease transmission with at least 95% probability.

14.
EFSA J ; 20(1): e07068, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35106092

RESUMO

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Contagious Caprine Pleuropneumonia (CCPP). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period, (iii) the minimum radius of the protection and surveillance zones and iv) the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Different clinical and laboratory sampling procedures are proposed depending on the scenarios considered. The monitoring period of 45 days was assessed as effective in affected areas where high awareness is expected, and when the index case occurs in an area where the awareness is low the monitoring period should be at least 180 days (6 months). Since transmission kernels do not exist and data to estimate transmission kernels are not available, a surveillance zone of 3 km was considered effective based on expert knowledge, while a protection zone should also be developed to include establishments adjacent to affected ones. Recommendations, provided for each of the scenarios assessed, aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to CCPP.

15.
EFSA J ; 20(1): e07121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35106095

RESUMO

EFSA received a mandate from the EC to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures are assessed, with this opinion covering the assessment of control measures for Lumpy Skin Disease (LSD). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: i) clinical and laboratory sampling procedures, ii) monitoring period and iii) the minimum radius of the protection and surveillance zones, and the minimum length of time that measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period was assessed as effective, and based on the transmission kernels available, it was concluded that the protection zone of 20 km radius and the surveillance zone of 50 km radius would comprise > 99% of the transmission from an affected establishment if transmission occurred. Recommendations provided for each of the assessed scenarios aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to LSD.

16.
EFSA J ; 20(1): e07069, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35035583

RESUMO

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for glanders. In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere. Considering the epidemiology and distribution of glanders, it was foreseen that three different situations could lead to a suspicion of the disease. Sampling procedures were defined for each of the three different suspicion types, which can also be applied in most of the other scenarios assessed. The monitoring period (6 months) was assessed as effective in all scenarios. The AHAW Panel of experts considered the minimum radius and duration of the existing protection and surveillance zone, set at the establishment level, effective. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to glanders.

17.
EFSA J ; 20(1): e07067, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079288

RESUMO

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Contagious Bovine Pleuropneumonia (CBPP). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period, (iii) the minimum radius of the protection and surveillance zones, and (iv) the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Different clinical and laboratory sampling procedures are proposed depending on the scenarios considered. The monitoring period of 45 days was assessed as not effective and at least 90 days (3 months) is recommended in affected areas where high awareness is expected; when the index case occurs in an area where the awareness is low the monitoring period should be at least 180 days (6 months). Since transmission kernels do not exist and data to estimate transmission kernels are not available, the effectiveness of surveillance and protection zones for CBPP was based on expert knowledge. A surveillance zone of 3 km was considered effective, while a protection zone including establishments adjacent to affected ones is recommended. Recommendations, provided for each of the scenarios assessed, aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to CBPP.

18.
EFSA J ; 19(12): e06953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925561

RESUMO

In 2020, Council Directive 2005/94/EC required EU Member States (MSs) to carry out surveillance for avian influenza (AI) in poultry and wild birds and notify the results to the responsible authority. Based on this, MSs, Iceland, Norway, Switzerland and the United Kingdom implemented ongoing surveillance programmes to monitor incursions of AI viruses in poultry and wild birds. EFSA received a mandate from the European Commission to collate, validate, analyse and summarise the data resulting from the avian influenza surveillance programmes in an annual report. This is the second such report produced using data directly submitted to EFSA by MSs. This report summarises the results of the surveillance activities carried out in poultry and wild birds in 2020. Overall, 24,768 poultry establishments (PEs) were sampled, of which 46 were seropositive for H5 virus strains and seven for H7 strains. Seropositive PEs were found in nine MSs (Belgium, Denmark, Finland, France, Italy, the Netherlands, Poland, Spain and Sweden) and the United Kingdom. As per previous years, the highest percentages of seropositive PEs were found in establishments raising waterfowl game birds and breeding geese. Out of the 53 PEs with positive serological tests for H5/H7, seven tested positive in polymerase chain reaction (PCR) or virology for H5/H7 virus strains: six for Low Pathogenic Avian Influenza (LPAI) and one for Highly Pathogenic Avian Influenza (HPAI). In addition, 13 countries also reported PCR results from 748 PEs which did not correspond to the follow-up testing of a positive serology event (e.g. in some PEs, PCR tests were used for screening). Twenty-five of these PEs were found positive for AI viral RNA. These positive PEs were located in Bulgaria, Estonia, Germany, Romania and Slovakia. A total of 18,968 wild birds were sampled, with 878 birds testing positive to HPAI virus. Fourteen countries reported HPAI-positive wild birds, with all HPAI strains identified as H5. Most positive birds were infected with H5N8, with a smaller number of N1, N3, N5 and unidentified NA subtypes. In addition, there were 317 birds testing positive for LPAI H5 or H7 virus and 429 birds testing positive for non-H5/H7 AI virus, reported by 31 countries. The surveillance findings for poultry and wild birds for 2020 are discussed in relation to the current knowledge of the epidemiology of AI in Europe, in particular the H5N8 epidemic which has been identified late 2020.

19.
EFSA J ; 19(12): e07108, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34987626

RESUMO

Between 16 September and 8 December 2021, 867 highly pathogenic avian influenza (HPAI) virus detections were reported in 27 EU/EEA countries and the UK in poultry (316), in wild (523) and in captive birds (28). The detections in poultry were mainly reported by Italy (167) followed by Hungary and Poland (35 each). Tha majority of the detections in wild birds were reported by Germany (280), Netherlands (65) and United Kingdom (53). The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. The frequent occurrence of HPAI A(H5) incursions in commercial farms (including poultry production types considered at low avian influenza risk) raises concern about the capacity of the applied biosecurity measures to prevent virus introduction. Short-term preparedness and medium- and long-term prevention strategies, including revising and reinforcing biosecurity measures, reduction of the density of commercial poultry farms and possible appropriate vaccination strategies, should be implemented. The results of the genetic analysis indicate that the viruses characterised during this reporting period belong to clade 2.3.4.4b. Some of the characterized HPAI A(H5N1) viruses detected in Sweden, Germany, Poland and United Kingdom are related to the viruses which have been circulating in Europe since October 2020; in North, Central, South and East Europe novel reassortant A(H5N1) virus has been introduced starting from October 2021. HPAI A(H5N1) was also detected in wild mammal species in Sweden, Estonia and Finland; some of these strains characterised so far present an adaptive marker that is associated with increased virulence and replication in mammals. Since the last report, 13 human infections due to HPAI A(H5N6) and two human cases due to LPAI A(H9N2) virus have been reported from China. Some of these A(H5N6) cases were caused by a reassortant virus of clade 2.3.4.4b, which possessed an HA gene closely related to the A(H5) viruses circulating in Europe. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium, with large uncertainty due to the high diversity of circulating viruses in the bird populations.

20.
EFSA J ; 19(12): e06951, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925560

RESUMO

The 2020-2021 epidemic with a total of 3,555 reported HPAI detections and around 22,400,000 affected poultry birds in 28 European Countries appears to be one of the largest and most devastating HPAI epidemics ever occurred in Europe. Between 24 February and 14 May 2021, 1,672 highly pathogenic avian influenza (HPAI) virus detections were reported in 24 EU/EEA countries and the UK in poultry (n=580), and in wild (n=1,051) and captive birds (n=41). The majority of the detections in poultry were reported by Poland that accounted for 297 outbreaks occurring in a densely populated poultry area over a short period of time, followed by Germany with 168 outbreaks. Germany accounted for 603 detections in wild birds, followed by Denmark and Poland with 167 and 56 detections, respectively. A second peak of HPAI-associated wild bird mortality was observed from February to April 2021 in north-west Europe. The observed longer persistence of HPAI in wild birds compared to previous years may result in a continuation of the risk for juveniles of wild birds and mammals, as well as for virus entry into poultry farms. Therefore, enhanced awareness among farmers to continue applying stringent biosecurity measures and to monitor and report increases in daily mortality and drops in production parameters, are recommended. Sixteen different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to reassort. The viruses characterized to date retain a preference for avian-type receptors; however, transmission events to mammals and the identification of sporadic mutations of mammal adaptation, indicate ongoing evolution processes and possible increased ability of viruses within this clade to further adapt and transmit to mammals including humans. Since the last report, two human infections due to A(H5N6) HPAI were reported from China and Laos and 10 human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus identified in China and Cambodia. The risk of infection for the general population in the EU/EEA is assessed as very low and for occupationally exposed people low. People exposed during avian influenza outbreaks should adhere to protection measures, strictly wear personal protective equipment and get tested immediately when developing respiratory symptoms or conjunctivitis within 10 days after exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA