Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571428

RESUMO

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Infecções por HIV/virologia , HIV-1/ultraestrutura , Humanos , Modelos Biológicos , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Transcrição Reversa , Vírion/metabolismo , Internalização do Vírus , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
2.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038579

RESUMO

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/prevenção & controle , Dependovirus , Camundongos , Pandemias , Interferência de RNA , RNA Interferente Pequeno/genética , SARS-CoV-2/genética
3.
Nat Methods ; 15(11): 924-927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377362

RESUMO

Anti-CRISPR proteins are powerful tools for CRISPR-Cas9 regulation; the ability to precisely modulate their activity could facilitate spatiotemporally confined genome perturbations and uncover fundamental aspects of CRISPR biology. We engineered optogenetic anti-CRISPR variants comprising hybrids of AcrIIA4, a potent Streptococcus pyogenes Cas9 inhibitor, and the LOV2 photosensor from Avena sativa. Coexpression of these proteins with CRISPR-Cas9 effectors enabled light-mediated genome and epigenome editing, and revealed rapid Cas9 genome targeting in human cells.


Assuntos
Técnicas Biossensoriais , Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Edição de Genes , Optogenética , Fototropinas/química , Engenharia de Proteínas , Epigenômica , Genoma , Células HEK293 , Humanos , Luz , Streptococcus pyogenes/enzimologia
4.
Mol Ther ; 28(4): 1016-1032, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32105604

RESUMO

Display of short peptides on the surface of adeno-associated viruses (AAVs) is a powerful technology for the generation of gene therapy vectors with altered cell specificities and/or transduction efficiencies. Following its extensive prior use in the best characterized AAV serotype 2 (AAV2), recent reports also indicate the potential of other AAV isolates as scaffolds for peptide display. In this study, we systematically explored the respective capacities of 13 different AAV capsid variants to tolerate 27 peptides inserted on the surface followed by production of reporter-encoding vectors. Single-round screening in pre-arrayed 96-well plates permitted rapid and simple identification of superior vectors in >90 cell types, including T cells and primary cells. Notably, vector performance depended not only on the combination of capsid, peptide, and cell type, but also on the position of the inserted peptide and the nature of flanking residues. For optimal data availability and accessibility, all results were assembled in a searchable online database offering multiple output styles. Finally, we established a reverse-transduction pipeline based on vector pre-spotting in 96- or 384-well plates that facilitates high-throughput library panning. Our comprehensive illustration of the vast potential of alternative AAV capsids for peptide display should accelerate their in vivo screening and application as unique gene therapy vectors.


Assuntos
Dependovirus/genética , Peptídeos/metabolismo , Análise Serial de Tecidos/métodos , Terapia Genética , Vetores Genéticos , Humanos , Biblioteca de Peptídeos , Peptídeos/genética , Transdução Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 47(13): e75, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30982889

RESUMO

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Regulação da Expressão Gênica , Transgenes , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/biossíntese , Dependovirus/genética , Ativação Enzimática , Indução Enzimática , Genes Reporter , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , MicroRNAs , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores
6.
Glia ; 66(2): 413-427, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29119608

RESUMO

Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs.


Assuntos
Astrócitos/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Dependovirus/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Vetores Genéticos/administração & dosagem , HIV-1/fisiologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular Transformada , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Prepúcio do Pênis/citologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Masculino
7.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768875

RESUMO

The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids.IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos , Montagem de Vírus , Animais , Proteínas do Capsídeo/genética , Dependovirus/efeitos dos fármacos , Dependovirus/metabolismo , Células HeLa , Humanos , Insetos , Mamíferos , Parvovirus/genética , Parvovirus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica , Células Sf9 , Vírion/metabolismo
8.
BMC Cancer ; 18(1): 663, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914415

RESUMO

BACKGROUND: Deletions of 6q15-16.1 are recurrently found in pediatric T-cell acute lymphoblastic leukemia (T-ALL). This chromosomal region includes the mitogen-activated protein kinase kinase kinase 7 (MAP3K7) gene which has a crucial role in innate immune signaling and was observed to be functionally and prognostically relevant in different cancer entities. Therefore, we correlated the presence of MAP3K7 deletions with clinical parameters in a cohort of 327 pediatric T-ALL patients and investigated the function of MAP3K7 in the T-ALL cell lines CCRF-CEM, Jurkat and MOLT-4. METHODS: MAP3K7 deletions were detected by multiplex ligation-dependent probe amplification (MLPA). T-ALL cell lines were transduced with adeno-associated virus (AAV) vectors expressing anti-MAP3K7 shRNA or a non-silencing shRNA together with a GFP reporter. Transduction efficiency was measured by flow cytometry and depletion efficiency by RT-PCR and Western blots. Induction of apoptosis was measured by flow cytometry after staining with PE-conjugated Annexin V. In order to assess the contribution of NF-κB signaling to the effects of MAP3K7 depletion, cells were treated with TNF-α and cell lysates analyzed for components of the NF-κB pathway by Western blotting and for expression of the NF-κB target genes BCL2, CMYC, FAS, PTEN and TNF-α by RT-PCR. RESULTS: MAP3K7 is deleted in approximately 10% and point-mutated in approximately 1% of children with T-ALL. In 32 of 33 leukemias the deletion of MAP3K7 also included the adjacent CASP8AP2 gene. MAP3K7 deletions were associated with the occurrence of SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and outcome. Depletion of MAP3K7 expression in T-ALL cell lines by shRNAs slowed down proliferation and induced apoptosis, but neither changed protein levels of components of NF-κB signaling nor NF-κB target gene expression after stimulation with TNF-α. CONCLUSIONS: This study revealed that the recurrent deletion of MAP3K7/CASP8AP2 is associated with SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and risk of relapse. Homozygous deletions of MAP3K7 were not observed, and efficient depletion of MAP3K7 interfered with viability of T-ALL cells, indicating that a residual expression of MAP3K7 is indispensable for T-lymphoblasts.


Assuntos
MAP Quinase Quinase Quinases/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Estimativa de Kaplan-Meier , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , NF-kappa B/metabolismo , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Modelos de Riscos Proporcionais , Resultado do Tratamento
9.
Mol Syst Biol ; 11(3): 795, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26148348

RESUMO

Liver regeneration is a tightly controlled process mainly achieved by proliferation of usually quiescent hepatocytes. The specific molecular mechanisms ensuring cell division only in response to proliferative signals such as hepatocyte growth factor (HGF) are not fully understood. Here, we combined quantitative time-resolved analysis of primary mouse hepatocyte proliferation at the single cell and at the population level with mathematical modeling. We showed that numerous G1/S transition components are activated upon hepatocyte isolation whereas DNA replication only occurs upon additional HGF stimulation. In response to HGF, Cyclin:CDK complex formation was increased, p21 rather than p27 was regulated, and Rb expression was enhanced. Quantification of protein levels at the restriction point showed an excess of CDK2 over CDK4 and limiting amounts of the transcription factor E2F-1. Analysis with our mathematical model revealed that T160 phosphorylation of CDK2 correlated best with growth factor-dependent proliferation, which we validated experimentally on both the population and the single cell level. In conclusion, we identified CDK2 phosphorylation as a gate-keeping mechanism to maintain hepatocyte quiescence in the absence of HGF.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/efeitos dos fármacos , Tirosina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Modelos Teóricos , Fosforilação , Cultura Primária de Células , Análise de Célula Única
10.
Mol Ther ; 22(12): 2130-2141, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25189739

RESUMO

Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , MicroRNAs/genética , RNA Mensageiro/imunologia , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Fígado/metabolismo , Fígado/patologia , Malária/genética , Malária/patologia , Vacinas Antimaláricas/genética , Masculino , Camundongos , MicroRNAs/metabolismo , Plasmodium berghei/patogenicidade , Regulação para Cima , Vacinas Atenuadas/genética
11.
Nucleic Acids Res ; 41(21): e199, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24049077

RESUMO

As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.


Assuntos
Proteínas Argonautas/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , Interferência de RNA , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular Tumoral , Dependovirus/genética , Células HEK293 , Humanos , Lentivirus/genética , Fígado/metabolismo , Camundongos , Fenótipo , Plasmídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética
12.
Infect Genet Evol ; 119: 105577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403035

RESUMO

In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region. In total, we sequenced 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023. Valid sequences, meeting the requirements for upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), were determined for 24,852 samples, and the lineage/clade could be identified for 25,912 samples. The year 2021 witnessed significant dynamics in the circulating variants in the Rhine-Neckar/Heidelberg region, including A.27.RN, followed by the emergence of B.1.1.7 (Alpha), subsequently displaced by B.1.617.2 (Delta), and the initial occurrences of B.1.1.529 (Omicron). By January 2022, B.1.1.529 had superseded B.1.617.2, dominating with over 90%. The years 2022 and 2023 were then characterized by the dominance of B.1.1.529 and its sublineages, particularly BA.5 and BA.2, and more recently, the emergence of recombinant variants like XBB.1.5. Since the global dominance of B.1.617.2, the identified variant distribution in our local study, apart from a time delay in the spread of new variants, can be considered largely representative of the global distribution. om a time delay in the spread of new variants, can be considered largely representative of the global distribution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Alemanha/epidemiologia , Hospitais Universitários
13.
Biomaterials ; 303: 122399, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992599

RESUMO

Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Infecções por HIV , Camundongos , Humanos , Animais , Transdução Genética , Dependovirus/genética , Vetores Genéticos/genética , Terapia Genética
14.
Methods Mol Biol ; 2510: 129-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776323

RESUMO

Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.


Assuntos
Dependovirus , Vetores Genéticos , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos/genética , Transdução Genética , Tropismo
15.
Sci Rep ; 12(1): 8356, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589936

RESUMO

Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.


Assuntos
Dependovirus , Transportadores de Ânions Orgânicos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Proteínas Mitocondriais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transdução Genética
16.
Mol Ther ; 18(1): 161-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19844192

RESUMO

Short hairpin RNAs (shRNAs) have emerged as a novel therapeutic modality, but there is increasing concern over nonspecific effects in vivo. Here, we used viral vectors to express shRNAs against endogenous p53 in livers of conditional MYC-transgenic mice. As expected, the shRNAs silenced hepatic p53 and accelerated liver tumorigenesis when MYC was concurrently expressed. Surprisingly, various irrelevant control shRNAs similarly induced a rapid onset of tumorigenesis, comparable to carbon tetrachloride (CCl4), a potent carcinogen. We found that even marginal shRNA doses can already trigger histologically detectable hepatoxicity and increased hepatocyte apoptosis. Moreover, we noted that shRNA expression globally dysregulated hepatic microRNA (miRNA) expression, and that shRNA levels and activity further increased in the presence of MYC. In MYC-expressing transgenic mice, the marginal shRNA-induced liver injury sufficed to further stimulate hepatocellular division that was in turn associated with markedly increased expression of the mitotic cyclin B1. Hence, even at low doses, shRNAs can cause low-level hepatoxicity that can facilitate the ability of the MYC oncogene to induce liver tumorigenesis. Our data warrant caution regarding the possible carcinogenic potential of shRNAs when used as clinical agent, particularly in circumstances where tissues are genetically predisposed to cellular transformation and proliferation.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Genes myc/fisiologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , RNA Interferente Pequeno/efeitos adversos , Animais , Northern Blotting , Southern Blotting , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Genes myc/genética , Vetores Genéticos/genética , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
17.
Mol Ther Methods Clin Dev ; 23: 334-347, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34729380

RESUMO

Preclinical studies on gene delivery into mouse lymphocytes are often hampered by insufficient activity of lentiviral (LV) and adeno-associated vectors (AAVs) as well as missing tools for cell type selectivity when considering in vivo gene therapy. Here, we selected designed ankyrin repeat proteins (DARPins) binding to murine CD8. The top-performing DARPin was displayed as targeting ligand on both vector systems. When used on engineered measles virus (MV) glycoproteins, the resulting mCD8-LV transduced CD8+ mouse lymphocytes with near-absolute (>99%) selectivity. Despite its lower functional titer, mCD8-LV achieved 4-fold higher gene delivery to CD8+ cells than conventional VSV-LV when added to whole mouse blood. Addition of mCD8-LV encoding a chimeric antigen receptor (CAR) specific for mouse CD19 to splenocytes resulted in elimination of B lymphocytes and lymphoma cells. For display on AAV, the DARPin was inserted into the GH2-GH3 loop of the AAV2 capsid protein VP1, resulting in a DARPin-targeted AAV we termed DART-AAV. Stocks of mCD8-AAV contained similar genome copies as AAV2 but were >20-fold more active in gene delivery in mouse splenocytes, while exhibiting >99% specificity for CD8+ cells. These results suggest that receptor targeting can overcome blocks in transduction of mouse splenocytes.

18.
Hum Gene Ther ; 32(17-18): 959-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554722

RESUMO

We present membrane-based steric exclusion chromatography (SXC) as a universal capture step for purification of adeno-associated virus (AAV) gene transfer vectors independent of their serotype and surface characteristics. SXC is performed by mixing an unpurified cell culture supernatant containing AAV particles with polyethylene glycol (PEG) and feeding the mixture onto a chromatography filter unit. The purified AAV particles are recovered by flushing the unit with a solution lacking PEG. SXC is an inexpensive single-use method that permits to concentrate, purify, and re-buffer AAV particles with yields >95% and >80% impurity clearance. SXC could theoretically be employed at industrial scales with units of nearly 20 m2.


Assuntos
Terapia Genética , Polietilenoglicóis , Técnicas de Cultura de Células , Cromatografia em Gel , Dependovirus/genética , Genes Virais , Vetores Genéticos/genética
19.
Viruses ; 12(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784757

RESUMO

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Assuntos
Betacoronavirus/química , Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , RNA Viral/isolamento & purificação , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Humanos , Fenômenos Magnéticos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , SARS-CoV-2 , Sensibilidade e Especificidade
20.
Hum Gene Ther ; 30(1): 21-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978729

RESUMO

Over the last decade, the role of the assembly-activating protein (AAP) has begun to be dissected for the formation of adeno-associated virus (AAV) capsids based on different viral serotypes. Recently, the authors' group has specifically studied AAP's relevance during production of AAV gene therapy vectors in mammalian or insect cells, and AAP was found to be essential for capsid protein stabilization and generation of functional vector particles. Here, the lingering question is additionally addressed of whether molecular AAV evolution via DNA family shuffling of viral capsid genes would perturb AAP functionality due to concurrent and inadvertent recombination of the AAP open reading frame. To this end, a battery of complementary experiments was conducted in which: (1) the ability of chimeric AAP from AAVDJ, a hybrid of serotypes 2, 8, and 9, was tested to rescue AAP knockouts in the three parental serotypes; (2) the functionality of 60 chimeric AAPs extracted from five shuffled, unselected capsid libraries was measured; (3) whether production of different shuffled libraries, 10 wild-type serotypes or 25 individual chimeric capsids, can be enhanced by overexpression of AAP cocktails was assessed; and (4) the activity of 12 chimeric AAPs isolated from a shuffled library that was iteratively selected in vivo in mouse livers was studied. Collectively, the data demonstrate a remarkable tolerance of AAP for recombination via DNA family shuffling, evidenced by the findings that (1) all chimeric AAPs studied here retained at least partial activity, even in cases where the cognate hybrid capsid may be non-functional, and that (2) ectopic AAP overexpression did not enhance production of shuffled AAV chimeras or libraries, implying that the inherently encoded hybrid AAP variants are sufficiently active. Together, this work provides compelling evidence that AAP is not rate limiting during AAV capsid shuffling and thereby relieves a major concern in the field of AAV vector evolution.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Dependovirus/fisiologia , Evolução Molecular , Montagem de Vírus , Sequência de Aminoácidos , Biodiversidade , Proteínas do Capsídeo/química , Linhagem Celular , Clonagem Molecular , Embaralhamento de DNA , Dependovirus/classificação , Expressão Gênica , Humanos , Sorogrupo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA