Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382973

RESUMO

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Assuntos
COVID-19/imunologia , Monócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Linfócitos T/imunologia , COVID-19/líquido cefalorraquidiano , COVID-19/complicações , COVID-19/patologia , Diferenciação Celular , Líquido Cefalorraquidiano/imunologia , Encefalite Viral/líquido cefalorraquidiano , Encefalite Viral/imunologia , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Interferons/imunologia , Leucócitos/imunologia , Ativação Linfocitária , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/imunologia , Análise de Célula Única
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479995

RESUMO

Ectopic lymphoid tissue containing B cells forms in the meninges at late stages of human multiple sclerosis (MS) and when neuroinflammation is induced by interleukin (IL)-17 producing T helper (Th17) cells in rodents. B cell differentiation and the subsequent release of class-switched immunoglobulins have been speculated to occur in the meninges, but the exact cellular composition and underlying mechanisms of meningeal-dominated inflammation remain unknown. Here, we performed in-depth characterization of meningeal versus parenchymal Th17-induced rodent neuroinflammation. The most pronounced cellular and transcriptional differences between these compartments was the localization of B cells exhibiting a follicular phenotype exclusively to the meninges. Correspondingly, meningeal but not parenchymal Th17 cells acquired a B cell-supporting phenotype and resided in close contact with B cells. This preferential B cell tropism for the meninges and the formation of meningeal ectopic lymphoid tissue was partially dependent on the expression of the transcription factor Bcl6 in Th17 cells that is required in other T cell lineages to induce isotype class switching in B cells. A function of Bcl6 in Th17 cells was only detected in vivo and was reflected by the induction of B cell-supporting cytokines, the appearance of follicular B cells in the meninges, and of immunoglobulin class switching in the cerebrospinal fluid. We thus identify the induction of a B cell-supporting meningeal microenvironment by Bcl6 in Th17 cells as a mechanism controlling compartment specificity in neuroinflammation.


Assuntos
Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Th17/metabolismo , Animais , Linfócitos B/imunologia , Comunicação Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Centro Germinativo/imunologia , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Tecido Parenquimatoso/imunologia , Tecido Parenquimatoso/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Células Th17/imunologia , Células Th17/fisiologia
3.
J Neuroinflammation ; 19(1): 306, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536441

RESUMO

Multiple sclerosis (MS) is a chronic and often disabling autoimmune disease of the central nervous system (CNS). Cerebrospinal fluid (CSF) surrounds and protects the CNS. Analysis of CSF can aid the diagnosis of CNS diseases, help to identify the prognosis, and underlying mechanisms of diseases. Several recent studies have leveraged single-cell RNA-sequencing (scRNA-seq) to identify MS-associated changes in CSF cells that are considerably more altered than blood cells in MS. However, not all alterations were replicated across all studies. We therefore integrated multiple available scRNA-seq datasets of CSF cells from MS patients with early relapsing-remitting (RRMS) disease. We provide a searchable and interactive resource of this integrated analysis ( https://CSFinMS.bxgenomics.com ) facilitating diverse visualization and analysis methods without requiring computational skills. In the present joint analysis, we replicated the known expansion of B lineage and the recently described expansion of natural killer (NK) cells and some cytotoxic T cells and decrease of monocytes in the CSF in MS. The previous observation of the abundance of Th1-like Th17 effector memory cells in the CSF was not replicated. Expanded CSF B lineage cells resembled class-switched plasmablasts/-cells (e.g., SDC1/CD138, MZB1) as expected. Our integrative analysis thus validates increased cell type diversity and B cell maturation in the CSF in MS and improves accessibility of available data.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Transcriptoma , Sistema Nervoso Central , Perfilação da Expressão Gênica , Células Matadoras Naturais , Líquido Cefalorraquidiano
4.
Genome Med ; 14(1): 94, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978442

RESUMO

The cerebrospinal fluid (CSF) features a unique immune cell composition and is in constant contact with the brain borders, thus permitting insights into the brain to diagnose and monitor diseases. Recently, the meninges, which are filled with CSF, were identified as a neuroimmunological interface, highlighting the potential of exploring central nervous system (CNS) immunity by studying CNS border compartments. Here, we summarize how single-cell transcriptomics of such border compartments advance our understanding of neurological diseases, the challenges that remain, and what opportunities novel multi-omic methods offer. Single-cell transcriptomics studies have detected cytotoxic CD4+ T cells and clonally expanded T and B cells in the CSF in the autoimmune disease multiple sclerosis; clonally expanded pathogenic CD8+ T cells were found in the CSF and in the brain adjacent to ß-amyloid plaques of dementia patients; in patients with brain metastases, CD8+ T cell clonotypes were shared between the brain parenchyma and the CSF and persisted after therapy. We also outline how novel multi-omic approaches permit the simultaneous measurements of gene expression, chromatin accessibility, and protein in the same cells, which remain to be explored in the CSF. This calls for multicenter initiatives to create single-cell atlases, posing challenges in integrating patients and modalities across centers. While high-dimensional analyses of CSF cells are challenging, they hold potential for personalized medicine by better resolving heterogeneous diseases and stratifying patients.


Assuntos
Linfócitos T CD8-Positivos , Esclerose Múltipla , Encéfalo/patologia , Sistema Nervoso Central/patologia , Humanos , Imunidade , Estudos Multicêntricos como Assunto
5.
Nat Neurosci ; 24(9): 1225-1234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253922

RESUMO

The CNS is ensheathed by the meninges and cerebrospinal fluid, and recent findings suggest that these CNS-associated border tissues have complex immunological functions. Unlike myeloid lineage cells, lymphocytes in border compartments have yet to be thoroughly characterized. Based on single-cell transcriptomics, we here identified a highly location-specific composition and expression profile of tissue-resident leukocytes in CNS parenchyma, pia-enriched subdural meninges, dura mater, choroid plexus and cerebrospinal fluid. The dura layer of the meninges contained a large population of B cells under homeostatic conditions in mice and rats. Murine dura B cells exhibited slow turnover and long-term tissue residency, and they matured in experimental neuroinflammation. The dura also contained B lineage progenitors at the pro-B cell stage typically not found outside of bone marrow, without direct influx from the periphery or the skull bone marrow. This identified the dura as an unexpected site of B cell residence and potentially of development in both homeostasis and neuroinflammation.


Assuntos
Linfócitos B/imunologia , Meninges/imunologia , Células Precursoras de Linfócitos B/imunologia , Animais , Camundongos , Ratos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA