Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Br J Cancer ; 130(8): 1402-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467828

RESUMO

BACKGROUND: Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS: We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS: The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS: AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.


Assuntos
Aurora Quinase A , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/metabolismo , Aurora Quinase A/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Neuroendocrinology ; 110(1-2): 50-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31030198

RESUMO

BACKGROUND: Neuroendocrine carcinoma (NEC) is a rare and very aggressive tumor. It has been greatly understudied, and very little is known about optimal treatment strategy for patients with this disease. The purpose of this study was to evaluate in vivo whether anti-vascular endothelial growth factor (VEGF) drugs could be a therapeutic alternative for these tumors with a poor prognosis. METHODS: We have developed 2 xenograft models using either human cell line derived from lung (H460) or from colon (COLO320) NEC to assess the effect of 2 antiangiogenic drugs, aflibercept and bevacizumab, on tumor growth and their pathological characteristics. Additionally, tumors were subjected to immunohistochemistry staining and proteins were measured with Western blot and ELISA. RESULTS: Both aflibercept and bevacizumab showed significant antitumor activity (p < 0.001). In the H460 model, aflibercept resulted in 94% tumor growth inhibition (TGI) and bevacizumab treatment resulted in 72.2% TGI. Similarly, in the COLO320 model, aflibercept and bevacizumab resulted in 89.3 and 84% TGI, respectively. Moreover, antitumor activity occurs early after treatment initiation. Using Tumor Control Index score, which address the kinetics of tumor growth in a way comparable to the methods used in human clinical studies, we confirmed that both drugs inhibit significantly tumor growth. When tumor stabilization was evaluated, aflibercept shows higher ability to stabilize NEC tumors than bevacizumab. CONCLUSION: Results derived from this study strongly support anti-VEGF therapies, especially aflibercept, as a novel therapeutic option in NECs. Further studies are necessary, but our observations encourage the evaluation of antiangiogenics in clinical trials combined with standard chemotherapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Carcinoma Neuroendócrino/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular
4.
Cancers (Basel) ; 15(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38001663

RESUMO

Background: patient-derived xenografts (PDXs) have defined the field of translational cancer research in recent years, becoming one of the most-used tools in early drug development. The process of establishing cancer models in mice has turned out to be challenging, since little research focuses on evaluating which factors impact engraftment success. We sought to determine the clinical, pathological, or molecular factors which may predict better engraftment rates in PDXs. Methods: between March 2017 and January 2021, tumor samples obtained from patients with primary or metastatic cancer were implanted into athymic nude mice. A full comprehensive evaluation of baseline factors associated with the patients and patients' tumors was performed, with the goal of potentially identifying predictive markers of engraftment. We focused on clinical (patient factors) pathological (patients' tumor samples) and molecular (patients' tumor samples) characteristics, analyzed either by immunohistochemistry (IHC) or next-generation sequencing (NGS), which were associated with the likelihood of final engraftment, as well as with tumor growth rates in xenografts. Results: a total of 585 tumor samples were collected and implanted. Twenty-one failed to engraft, due to lack of malignant cells. Of 564 tumor-positive samples, 187 (33.2%) grew at time of analysis. The study was able to find correlation and predictive value for engraftment for the following: the use of systemic antibiotics by the patient within 2 weeks of sampling (38.1% (72/189) antibiotics- group vs. 30.7% (115/375) no-antibiotics) (p = 0.048), and the administration of systemic steroids to the patients within 2 weeks of sampling (41.5% (34/48) steroids vs. 31.7% (153/329), no-steroids) (p = 0.049). Regarding patient's baseline tests, we found certain markers could help predict final engraftment success: for lactate dehydrogenase (LDH) levels, 34.1% (140/411) of tumors derived from patients with baseline blood LDH levels above the upper limit of normality (ULN) achieved growth, against 30.7% (47/153) with normal LDH (p = 0.047). Histological tumor characteristics, such as grade of differentiation, were also correlated. Grade 1: 25.4% (47/187), grade 2: 34.8% (65/187) and grade 3: 40.1% (75/187) tumors achieved successful growth (p = 0.043), suggesting the higher the grade, the higher the likelihood of success. Similarly, higher ki67 levels were also correlated with better engraftment rates: low (Ki67 < 15%): 8.9% (9/45) achieved growth vs. high (Ki67 ≥ 15%): 31% (35/113) (p: 0.002). Other markers of aggressiveness such as the presence of lymphovascular invasion in tumor sample of origin was also predictive: 42.2% (97/230) with lymphovascular vs. 26.9% (90/334) of samples with no invasion (p = 0.0001). From the molecular standpoint, mismatch-repair-deficient (MMRd) tumors showed better engraftment rates: 62.1% (18/29) achieved growth vs. 40.8% (75/184) of proficient tumors (p = 0.026). A total of 84 PDX were breast models, among which 57.9% (11/19) ER-negative models grew, vs. 15.4% (10/65) of ER-positive models (p = 0.0001), also consonant with ER-negative tumors being more aggressive. BRAFmut cancers are more likely to achieve engraftment during the development of PDX models. Lastly, tumor growth rates during first passages can help establish a cutoff point for the decision-making process during PDX development, since the higher the tumor grades, the higher the likelihood of success. Conclusions: tumors with higher grade and Ki67 protein expression, lymphovascular and/or perineural invasion, with dMMR and are negative for ER expression have a higher probability of achieving growth in the process of PDX development. The use of steroids and/or antibiotics in the patient prior to sampling can also impact the likelihood of success in PDX development. Lastly, establishing a cutoff point for tumor growth rates could guide the decision-making process during PDX development.

5.
Biomed Pharmacother ; 156: 113987, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411654

RESUMO

INTRODUCTION: small-cell lung cancer (SCLC) is one of the most lethal malignancies. Its management is complex due to the lack of biomarkers and limited therapies. Galectin-1 (Gal-1) plays a major role in cancer development and progression. The aim of this study is to assess whether Gal-1 has a predictive role in the disease evolution and its therapeutic potential. MATERIAL AND METHODS: The expression level of Gal-1 was examined by using a public RNA-sequencing (77 SCLC patients) and in-house immunohistochemistry (IHC) performed on biopsies from 81 patients. Survival curves and Cox regression analysis were used to assess the prognostic potential of Gal-1. In addition, a SCLC-PDX model was carried out and treated with either OTX008, an inhibitor of Gal-1, or vehicle to assess the effects of Gal-1 inhibition on this disease in vivo. RESULTS: Galectin-1 gene (LGALS1) expression showed a strong negative correlation with outcome in SCLC patients with advanced disease (p = 0.007). IHC unveiled that overall survival (OS) was significantly lower among extensive-stage SCLC (ES-SCLC) patient group with increased level of Gal-1 and platelet-to-lymphocyte ratio (PLR) (HR=3.07, 95% CI: 1.62, 5.79, p < 0.001). The SCLC-PDX model showed a significant reduction in tumor size (tumor growth inhibition [TGI] index 73%) without side effects. DISCUSSION: in this study, high levels of Gal-1 and PLR were associated with poorer OS in SCLC patients, supporting their utility as clinical prognostic biomarkers. Moreover, the in vivo model suggests the inhibition of Gal-1 as a novel potential therapy for this disease with very poor prognosis.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Galectina 1/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Benzamidas , Neoplasias Pulmonares/tratamento farmacológico
6.
Biomed Pharmacother ; 144: 112347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700228

RESUMO

New therapeutic targets are revolutionizing colorectal cancer clinical management, opening new horizons in metastatic patients' outcome. Polo Like Kinase1 (PLK1) inhibitors have high potential as antitumoral agents, however, the emergence of drug resistance is a major challenge for their use in clinical practice. Overcoming this challenge represents a hot topic in current drug discovery research. BI2536-resistant colorectal cancer cell lines HT29R, RKOR, SW837R and HCT116R, were generated in vitro and validated by IG50 assays and xenografts models by the T/C ratio. Exons 1 and 2 of PLK1 gene were sequenced by Sanger method. AXL pathway, Epithelial-to-Mesenchymal transition (EMT) and Multidrug Resistance (MDR1) were studied by qPCR and western blot in resistant cells. Simvastatin as a re-sensitizer drug was tested in vitro and the drug combination strategies were validated in vitro and in vivo. PLK1 gene mutation R136G was found for RKOR. AXL pathway trough TWIST1 transcription factor was identified as one of the mechanisms involved in HT29R, SW837R and HCT116R lines, inducing EMT and upregulation of MDR1. Simvastatin was able to impair the mechanisms activated by adaptive resistance and its combination with BI2536 re-sensitized resistant cells in vitro and in vivo. Targeting the mevalonate pathway contributes to re-sensitizing BI2536-resistant cells in vitro and in vivo, raising as a new strategy for the clinical management of PLK1 inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ácido Mevalônico/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Sinvastatina/farmacologia , Proteína 1 Relacionada a Twist/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos Nus , Mutação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl , Quinase 1 Polo-Like
7.
Mol Cancer Ther ; 19(8): 1751-1760, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499301

RESUMO

Metastasis development is the leading cause of cancer-related mortality in pancreatic ductal adenocarcinoma (PDAC) and yet, few preclinical systems to recapitulate its full spreading process are available. Thus, modeling of tumor progression to metastasis is urgently needed. In this work, we describe the generation of highly metastatic PDAC patient-derived xenograft (PDX) mouse models and subsequent single-cell RNA-sequencing (RNA-seq) of circulating tumor cells (CTC), isolated by human HLA sorting, to identify altered signaling and metabolic pathways, as well as potential therapeutic targets. The mouse models developed liver and lung metastasis with a high reproducibility rate. Isolated CTCs were highly tumorigenic, had metastatic potential, and single-cell RNA-seq showed that their expression profiles clustered separately from those of their matched primary and metastatic tumors and were characterized by low expression of cell-cycle and extracellular matrix-associated genes. CTC transcriptomics identified survivin (BIRC5), a key regulator of mitosis and apoptosis, as one of the highest upregulated genes during metastatic spread. Pharmacologic inhibition of survivin with YM155 or survivin knockdown promoted cell death in organoid models as well as anoikis, suggesting that survivin facilitates cancer cell survival in circulation. Treatment of metastatic PDX models with YM155 alone and in combination with chemotherapy hindered the metastatic development resulting in improved survival. Metastatic PDX mouse model development allowed the identification of survivin as a promising therapeutic target to prevent the metastatic dissemination in PDAC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/patologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Apoptose , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Clin Cancer Res ; 24(15): 3550-3559, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29588308

RESUMO

Purpose: Despite the wide use of antiangiogenic drugs in the clinical setting, predictive biomarkers of response to these drugs are still unknown.Experimental Design: We applied whole-exome sequencing of matched germline and basal plasma cell-free DNA samples (WES-cfDNA) on a RAS/BRAF/PIK3CA wild-type metastatic colorectal cancer patient with primary resistance to standard treatment regimens, including inhibitors to the VEGF:VEGFR2 pathway. We performed extensive functional experiments, including ectopic expression of VEGFR2 mutants in different cell lines, kinase and drug sensitivity assays, and cell- and patient-derived xenografts.Results: WES-cfDNA yielded a 77% concordance rate with tumor exome sequencing and enabled the identification of the KDR/VEGFR2 L840F clonal, somatic mutation as the cause of therapy refractoriness in our patient. In addition, we found that 1% to 3% of samples from cancer sequencing projects harbor KDR somatic mutations located in protein residues frequently mutated in other cancer-relevant kinases, such as EGFR, ABL1, and ALK. Our in vitro and in vivo functional assays confirmed that L840F causes strong resistance to antiangiogenic drugs, whereas the KDR hot-spot mutant R1032Q confers sensitivity to strong VEGFR2 inhibitors. Moreover, we showed that the D717V, G800D, G800R, L840F, G843D, S925F, R1022Q, R1032Q, and S1100F VEGFR2 mutants promote tumor growth in mice.Conclusions: Our study supports WES-cfDNA as a powerful platform for portraying the somatic mutation landscape of cancer and discovery of new resistance mechanisms to cancer therapies. Importantly, we discovered that VEGFR2 is somatically mutated across tumor types and that VEGFR2 mutants can be oncogenic and control sensitivity/resistance to antiangiogenic drugs. Clin Cancer Res; 24(15); 3550-9. ©2018 AACR.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Neoplasias Colorretais/genética , Neovascularização Patológica/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Quinase do Linfoma Anaplásico/genética , Inibidores da Angiogênese/efeitos adversos , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Exoma/genética , Feminino , Xenoenxertos , Humanos , Camundongos , Mutação , Neovascularização Patológica/sangue , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Conformação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Sequenciamento do Exoma
9.
Clin Cancer Res ; 23(21): 6661-6672, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765324

RESUMO

Purpose:MET exon 14 deletion (METex14 del) mutations represent a novel class of non-small cell lung cancer (NSCLC) driver mutations. We evaluated glesatinib, a spectrum-selective MET inhibitor exhibiting a type II binding mode, in METex14 del-positive nonclinical models and NSCLC patients and assessed its ability to overcome resistance to type I MET inhibitors.Experimental Design: As most MET inhibitors in clinical development bind the active site with a type I binding mode, we investigated mechanisms of acquired resistance to each MET inhibitor class utilizing in vitro and in vivo models and in glesatinib clinical trials.Results: Glesatinib inhibited MET signaling, demonstrated marked regression of METex14 del-driven patient-derived xenografts, and demonstrated a durable RECIST partial response in a METex14 del mutation-positive patient enrolled on a glesatinib clinical trial. Prolonged treatment of nonclinical models with selected MET inhibitors resulted in differences in resistance kinetics and mutations within the MET activation loop (i.e., D1228N, Y1230C/H) that conferred resistance to type I MET inhibitors, but remained sensitive to glesatinib. In vivo models exhibiting METex14 del/A-loop double mutations and resistance to type I inhibitors exhibited a marked response to glesatinib. Finally, a METex14 del mutation-positive NSCLC patient who responded to crizotinib but later relapsed, demonstrated a mixed response to glesatinib including reduction in size of a MET Y1230H mutation-positive liver metastasis and concurrent loss of detection of this mutation in plasma DNA.Conclusions: Together, these data demonstrate that glesatinib exhibits a distinct mechanism of target inhibition and can overcome resistance to type I MET inhibitors. Clin Cancer Res; 23(21); 6661-72. ©2017 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Benzenoacetamidas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/uso terapêutico , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Crizotinibe , Éxons/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genética , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Genome Med ; 6(4): 27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739241

RESUMO

BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA