Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9163-9168, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037721

RESUMO

Magneto-optical (MO) polymer nanocomposites have emerged as alternatives to conventional MO crystals, particularly in nanophotonics applications, thanks to their better processing flexibility and superior Verdet constants. However, a higher Verdet constant commonly comes with excessive optical loss due to increased absorption and scattering, resulting in a constant or reduced figure-of-merit (FOM) defined as the Verdet constant over optical loss. By doping magnetite (Fe3O4) nanoparticles with Tb3+ ions, we report a new strategy to enhance the Verdet constant without increasing the optical loss. The Fe3O4:Tb3+ nanocomposite is one of a kind that simultaneously achieves a state-of-the-art Verdet constant of 5.6 × 105 °/T·m and a state-of-the-art FOM of 31°/T in the near-infrared region.

2.
Nanoscale ; 16(15): 7690-7699, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38533655

RESUMO

Plasmonic nanostructures can be used to enhance the efficiency of upconversion nanoparticles (UCNPs) and enable new functionalities. However, the fabrication of these hybrid plasmon-UCNP nanostructures has traditionally relied on either wet chemistry or nanolithography routes that are difficult to control, scale up, or both. In this work, we present a scalable nanofabrication process, capable of producing a massive array of gold-UCNP hybrid nanostructures over a few mm2 area and with excellent uniformity in the photoluminescence intensity. This new approach combines the scalability of the bottom-up self-assembly method and the precision of the top-down nanolithography approach. It provides an efficient alternative route for the production of plasmonically enhanced UCNPs. A detailed discussion on the optimization of the UCNP self-assembly, the gold nanodisk lithography, and the nanopattern transfer processes is presented here. Additionally, we showcase the potential of this new approach for fabricating mechanical force sensors based on the selective plasmonic enhancement of the UCNP emission. This new approach holds great potential in facilitating the production of plasmonically enhanced UCNPs that can be deployed for both imaging and sensing applications.

3.
Nat Plants ; 5(8): 856-866, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358961

RESUMO

Plant pathogen detection conventionally relies on molecular technology that is complicated, time-consuming and constrained to centralized laboratories. We developed a cost-effective smartphone-based volatile organic compound (VOC) fingerprinting platform that allows non-invasive diagnosis of late blight caused by Phytophthora infestans by monitoring characteristic leaf volatile emissions in the field. This handheld device integrates a disposable colourimetric sensor array consisting of plasmonic nanocolorants and chemo-responsive organic dyes to detect key plant volatiles at the ppm level within 1 min of reaction. We demonstrate the multiplexed detection and classification of ten individual plant volatiles with this field-portable VOC-sensing platform, which allows for early detection of tomato late blight 2 d after inoculation, and differentiation from other pathogens of tomato that lead to similar symptoms on tomato foliage. Furthermore, we demonstrate a detection accuracy of ≥95% in diagnosis of P. infestans in both laboratory-inoculated and field-collected tomato leaves in blind pilot tests. Finally, the sensor platform has been beta-tested for detection of P. infestans in symptomless tomato plants in the greenhouse setting.


Assuntos
Aplicativos Móveis , Doenças das Plantas , Smartphone , Solanum tuberosum/microbiologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/química , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA