Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cells Tissues Organs ; 212(3): 215-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35203082

RESUMO

Many questions in human movement sciences are addressed by exploiting the advantages of animal models. However, a 3D graphical model of the musculoskeletal system of the frequently used rat model that includes a sufficient level of detail does not exist. Therefore, the aim of the present work was to develop an freely accessible 3D graphical model of the rat hindlimb. Using the anatomical data of the Wistar rat (Mus norvegicus albinus) published by Greene [1935], a 3D representation of 34 muscles of the hindlimb was drawn. Two models were created, one using muscle-like appearances and one using different colors. Each muscle can be viewed separately or within the context of its synergistic and antagonistic muscles. This model can serve to train new students before starting their experiments but also for producing illustrations of experimental conditions or results. Further development of the model will be needed to equip it with the same advanced functionalities of some of the human anatomy atlases.


Assuntos
Músculo Esquelético , Músculos , Animais , Ratos , Membro Posterior/anatomia & histologia , Modelos Animais , Músculo Esquelético/fisiologia , Ratos Wistar
2.
Eur J Appl Physiol ; 121(9): 2509-2519, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34061247

RESUMO

PURPOSE: The aim of this study was to assess the effects of experimentally induced photothrombotic stroke on structural and mechanical properties of rat m. flexor carpi ulnaris. METHODS: Two groups of Young-adult male Sprague-Dawley rats were measured: stroke (n = 9) and control (n = 7). Photothrombotic stroke was induced in the forelimb region of the primary sensorimotor cortex. Four weeks later, muscle-tendon unit and muscle belly length-force characteristics of the m. flexor carpi ulnaris, mechanical interaction with the neighbouring m. palmaris longus, the number of sarcomeres in series within muscle fibres, and the physiological cross-sectional area were measured. RESULTS: Stroke resulted in higher force and stiffness of the m. flexor carpi ulnaris at optimum muscle-tendon unit length, but only for the passive conditions. Stroke did not alter the length-force characteristics of m. flexor carpi ulnaris muscle belly, morphological characteristics, and the extent of mechanical interaction with m. palmaris longus muscle. CONCLUSION: The higher passive force and passive stiffness at the muscle-tendon unit level in the absence of changes in structural and mechanical characteristics of the muscle belly indicates that the experimentally induced stroke resulted in an increased stiffness of the tendon.


Assuntos
Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , AVC Trombótico/patologia , Animais , Fenômenos Biomecânicos , Isquemia Encefálica , Membro Anterior/patologia , Contração Isométrica , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Neurophysiol ; 115(6): 3146-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27075540

RESUMO

Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.


Assuntos
Potenciais de Ação/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/citologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Feminino , Contração Isométrica , Modelos Biológicos , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Estresse Mecânico
4.
J Exp Biol ; 219(Pt 7): 977-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896546

RESUMO

The relationship between mechanical and metabolic behaviour in the widely used Hill muscle-tendon complex (MTC) model is not straightforward, whereas this is an integral part of the Huxley model. In this study, we assessed to what extent Huxley- and Hill-type MTC models yield adequate predictions of mechanical muscle behaviour during stretch-shortening cycles (SSCs). In fully anaesthetized male Wistar rats (N=3), m. soleus was dissected completely free, except for the insertion. Cuff electrodes were placed over the n. ischiadicus. The distal end of the tendon was connected to a servo motor, via a force transducer. The setup allowed for full control over muscle stimulation and length, while force was measured. Quick-release and isovelocity contractions (part 1), and SSCs (part 2) were imposed. Simulations of part 2 were made with both a Hill and a Huxley MTC model, using parameter values determined from part 1. Modifications to the classic two-state Huxley model were made to incorporate series elasticity, activation dynamics, and active and passive force-length relationships. Results were similar for all rats. Fitting of the free parameters to the data of part 1 was near perfect (R(2)>0.97). During SSCs, predicted peak force and force during relaxation deviated from the experimental data for both models. Overall, both models yielded similarly adequate predictions of the experimental data. We conclude that Huxley and Hill MTC models are equally valid with respect to mechanical behaviour.


Assuntos
Contração Isométrica/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Wistar
5.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37913845

RESUMO

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sinalização do Cálcio , Contração Muscular
6.
J Physiol ; 589(Pt 1): 195-206, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21059761

RESUMO

Angiogenesis may be induced in skeletal muscle by metabolic or mechanical factors, but whether an in vivo stimulus threshold applies for physiological angiogenesis is unknown. We compared three models of muscle overload inducing varying degrees of stretch on angiogenesis. Rat extensor digitorum longus (EDL) was overloaded by (a) extirpation of the synergist tibialis anterior (TA), (b) sectioning the distal tendon of the TA, or (c) release of the TA tendon by sectioning the retaining ligament. EDL samples were taken after 4, 7, 14 and 28 days to quantify capillary supply (alkaline phosphatase staining), and co-labelling for cell proliferation (using PCNA). The gradation of overload was confirmed by Western analysis of SERCA and CPT expression (1.6- to 7.2-fold and 8.3- to 33.9-fold changes, respectively), and the force characteristics of EDL. There was a significant increase in the number of new myonuclei only in the extirpated group after 7 days, while there was a graded increase in capillary-linked PCNA density (PCNAcap) among groups compared to controls. However, extirpation caused significant increase in PCNAcap after 7 days, whereas tenotomy showed a more modest and delayed increase at 14 days, and ligament transection induced no significant change. Muscle capillary supply followed a similar trend to that of PCNA, whereas the pro-angiogenic VEGF and Flk-1 protein levels were both up-regulated to a similar extent in all three experimental models 7­14 days after surgery. These results are consistent with the hypothesis that overload-induced angiogenesis is primarily a mechanical response, and that it is graded according to stimulus intensity.


Assuntos
Capilares/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Doenças Musculares/fisiopatologia , Neovascularização Fisiológica , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Capilares/metabolismo , Proliferação de Células , Membro Posterior , Hipertrofia , Ligamentos/cirurgia , Masculino , Contração Muscular , Fusos Musculares/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tenotomia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Biomech ; 101: 109634, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31983404

RESUMO

Although the Achilles tendon (AT) has been studied for more than a century, a complete understanding of the mechanical and functional consequences of AT structural organization is currently lacking. The aim of this study was to assess how joint angle configuration affects subtendon displacement and strain of soleus (SOL) and lateral gastrocnemius (LG) muscles. Knots sutured onto SOL and LG subtendons of 12 Wistar rats, were videotaped to quantify displacements and the ankle torque was assessed for different isometric activation conditions (i.e., individual and simultaneous) of the triceps surae muscles. Changing ankle and knee joint angle affected the magnitude of displacement, relative displacement and strain of both SOL and LG subtendons. SOL subtendon behavior was not only affected by changes in ankle angle, but also by changes in knee angle. Displacement of SOL subtendon decreased (28-49%), but strain increased in response to knee extension. Independent of joint angle configuration, stimulation of any combination of the muscles typically resulted in displacements and strains of LG and SOL subtendons. Typically SOL displaced more but LG displaced more when stimulated at longer muscle lengths. Our results demonstrate that the distinct subtendons of the Achilles tendon can move and deform differently, but are not fully independent. Within the AT, there appears to be a precarious balance between sliding allowance and mechanical connectivity between subtendons.


Assuntos
Tendão do Calcâneo/fisiologia , Articulações/anatomia & histologia , Articulações/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Wistar , Torque , Suporte de Carga
9.
Artigo em Inglês | MEDLINE | ID: mdl-32766214

RESUMO

The Achilles tendon (AT) is comprised of three distinct sub-tendons bound together by the inter-subtendon matrix (ISTM). The interactions between sub-tendons will have important implications for AT function. The aim of this study was to investigate the extent to which the ISTM facilitates relative sliding between sub-tendons, and serves as a pathway for force transmission between the gastrocnemius (GAS) and soleus (SOL) sub-tendons of the rat AT. In this study, ATs were harvested from Wistar rats, and the mechanical behavior and composition of the ISTM were explored. To determine force transmission between sub-tendons, the proximal and distal ends of the GAS and SOL sub-tendons were secured, and the forces at each of these locations were measured during proximal loading of the GAS. To determine the ISTM mechanical behavior, only the proximal GAS and distal SOL were secured, and the ISTM was loaded in shear. Finally, for compositional analysis, histological examination assessed the distribution of matrix proteins throughout sub-tendons and the ISTM. The results revealed distinct differences between the forces at the proximal and distal ends of both sub-tendons when proximal loading was applied to the GAS, indicating force transmission between GAS and SOL sub-tendons. Inter-subtendon matrix tests demonstrated an extended initial low stiffness toe region to enable some sub-tendon sliding, coupled with high stiffness linear region such that force transmission between sub-tendons is ensured. Histological data demonstrate an enrichment of collagen III, elastin, lubricin and hyaluronic acid in the ISTM. We conclude that ISTM composition and mechanical behavior are specialized to allow some independent sub-tendon movement, whilst still ensuring capacity for force transmission between the sub-tendons of the AT.

10.
Front Physiol ; 11: 541302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192544

RESUMO

Aponeurotomy is a surgical intervention by which the aponeurosis is transsected perpendicularly to its longitudinal direction, halfway along its length. This surgical principle of aponeurotomy has been applied also to intramuscular lengthening and fibrotomia. In clinics, this intervention is performed in patients with cerebral palsy in order to lengthen or weaken spastic and/or short muscles. If the aponeurotomy is performed on the proximal aponeurosis, as is the case in the present study, muscle fibers located distally from the aponeurosis gap that develops lose their myotendinous connection to the origin. During recovery from this intervention, new connective (scar) tissue repairs the gap in the aponeurosis, as well as within the muscle belly. As a consequence, the aponeurosis is longer during and after recovery. In addition, the new connective tissue is more compliant than regular aponeurosis material. The aim of this study was to investigate changes in muscle geometry and adaptation of the number of sarcomeres in series after recovery from aponeurotomy of the proximal gastrocnemius medialis (GM) aponeurosis, as well as to relate these results to possible changes in the muscle length-force characteristics. Aponeurotomy was performed on the proximal aponeurosis of rat muscle GM and followed by 6 weeks of recovery. Results were compared to muscles of a control group and those of a sham-operated group. After recovery from aponeurotomy, proximal and distal muscle fiber lengths were similar to that of the control group. The mean sarcomere length from fibers located proximally relative to the aponeurosis gap remained unchanged. In contrast, fibers located distally showed 16-20% lower mean sarcomere lengths at different muscle lengths. The number of sarcomeres in series within the proximal as well as distal muscle fibers was unchanged. After recovery, muscle length-force characteristics were similar to those of the control group. A reversal of proximal-distal difference of fibers mean sarcomere lengths within muscles during recovery from aponeurotomy is hypothesized to be responsible for the lack of an effect. These results indicate that after recovery from aponeurotomy, geometrical adaptations preserved the muscle function. Moreover, it seems that the generally accepted rules of adaptation of serial sarcomere numbers are not applicable in this situation.

11.
Cells Tissues Organs ; 188(4): 400-14, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18349517

RESUMO

Most often muscles (as organs) are viewed as independent actuators. To test if this is true for antagonistic muscles, force was measured simultaneously at: (1) the proximal and distal tendons of the extensor digitorum muscle (EDL) to quantify any proximo-distal force differences, as an indicator of myofascial force transmission, (2) at the distal tendons of the whole antagonistic peroneal muscle group (PER) to test if effects of EDL length changes are present and (3) at the proximal end of the tibia to test if myofascially transmitted force is exerted there. EDL length was manipulated either at the proximal or distal tendons. This way equal EDL lengths are attained at two different positions of the muscle with respect to the tibia and antagonistic muscles. Despite its relatively small size, lengthening of the EDL changed forces exerted on the tibia and forces exerted by its antagonistic muscle group. Apart from its extramuscular myofascial connections, EDL has no connections to either the tibia or these antagonistic muscles. Proximal EDL lengthening increased distal muscular forces (active PER DeltaF approximately +1.7%), but decreased tibial forces (passive from 0.3 to 0 N; active DeltaF approximately -5%). Therefore, it is concluded that these antagonistic muscles do not act independently, because of myofascial force transmission between them. Such a decrease in tibial force indicates release of pre-strained connections. Distal EDL lengthening had opposite effects (tripling passive force exerted on tibia; active PER force DeltaF approximately -3.6%). It is concluded that the length and relative position of the EDL is a co-determinant of passive and active force exerted at tendons of nearby antagonistic muscle groups. These results necessitate a new view of the locomotor apparatus, which needs to take into account the high interdependence of muscles and muscle fibres as force generators, as well as proximo-distal force differences and serial and parallel distributions of sarcomere lengths that are consequences of such interaction. If this is done properly, the effects of integrating a muscle fibre, muscle or muscle group into higher levels of organisation of the body will be evident.


Assuntos
Fáscia/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Contração Isométrica , Masculino , Ratos , Ratos Wistar , Tendões/fisiologia
12.
J Electromyogr Kinesiol ; 17(6): 690-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17383201

RESUMO

Force transmission via pathways other than myotendinous ones, is referred to as myofascial force transmission. The present study shows that myofascial force transmission occurs not only between adjacent synergistic muscles or antagonistic muscles in adjacent compartments, but also between most distant antagonistic muscles within a segment. Tibialis anterior (TA), extensor hallucis longus (EHL), extensor digitorum longus (EDL), peroneal muscles (PER) and triceps surae muscles of 7 male anaesthetised Wistar rats were attached to force transducers, while connective tissues at the muscle bellies were left fully intact. The TA+EHL-complex was made to exerted force at different lengths, but the other muscles were held at a constant muscle-tendon complex length. With increasing TA+EHL-complex length, active force of maximally activated EDL, PER and triceps surae decreased by maximally approximately 5%, approximately 32% and approximately 16%, respectively. These decreases are for the largest part explained by myofascial force transmission. Particularly the force decrease in triceps surae muscles is remarkable, because these muscles are located furthest away from the TA+EHL-complex. It is concluded that substantial extramuscular myofascial force transmission occurs between antagonistic muscles even if the length of the path between them is considerable.


Assuntos
Fáscia/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/fisiologia , Estimulação Elétrica , Fáscia/anatomia & histologia , Membro Posterior/fisiologia , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/anatomia & histologia , Ratos , Ratos Wistar , Nervo Isquiático/fisiologia , Tendões/anatomia & histologia , Tendões/fisiologia
13.
J Electromyogr Kinesiol ; 17(6): 680-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17383898

RESUMO

The purpose of the present study was to test the hypothesis that myofascial force transmission may not be limited by compartmental boundaries of a muscle group to synergists. Muscles of the anterior tibial compartment in rat hindlimb as well as of the neighbouring peroneal compartment (antagonistic muscles) were excited maximally. Length-force data, based on proximal lengthening, of EDL, as well as distal lengthening of the tibial muscles (TA+EHL) and the peroneal muscle group (PER) were collected independently, while keeping the other two muscle groups at a constant muscle-tendon complex length. Simultaneously measured, distal and proximal EDL active forces were found to differ significantly throughout the experiment. The magnitude of this difference and its sign was affected after proximal lengthening of EDL itself, but also of the tibial muscle complex and of the peroneal muscle complex. Proximal lengthening of EDL predominantly affected its synergistic muscles within the anterior crural compartment (force decrease <4%). Lengthening of either TA or PER caused a decrease in distal EDL isometric force (by 5-6% of initial force). It is concluded also that mechanisms for mechanical intermuscular interaction extend beyond the limits of muscle compartments in the rat hindlimb. Even antagonistic muscles should not be considered fully independent units of muscular function. Particular, strong mechanical interaction was found between antagonistic tibial anterior muscle and peroneal muscle complexes: Lengthening of the peroneal complex caused tibial complex force to decrease by approximately 25%, whereas for the reverse a 30% force decrease was found.


Assuntos
Fáscia/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/fisiologia , Estimulação Elétrica , Fáscia/anatomia & histologia , Membro Posterior/fisiologia , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/anatomia & histologia , Ratos , Ratos Wistar , Nervo Isquiático/fisiologia , Processamento de Sinais Assistido por Computador , Tendões/anatomia & histologia , Tendões/fisiologia
14.
Front Physiol ; 7: 414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708589

RESUMO

Force transmission between rat ankle plantar-flexors has been found for physiological muscle lengths and relative positions, but only with all muscles maximally activated. The aims of this study were to assess intermuscular mechanical interactions between ankle plantar-flexors during (i) fully passive conditions, (ii) excitation of soleus (SO), (iii) excitation of lateral gastrocnemius (LG), and (iv) during co-activation of SO, and LG (SO&LG). We assessed effects of proximal lengthening of LG and plantaris (PL) muscles (i.e., simulating knee extension) on forces exerted at the distal SO tendon (FSO) and on the force difference between the proximal and distal LG+PL tendons (ΔFLG+PL) of the rat. LG+PL lengthening increased FSO to a larger extent (p = 0.017) during LG excitation (0.0026 N/mm) than during fully passive conditions (0.0009 N/mm). Changes in FSO in response to LG+PL lengthening were lower (p = 0.002) during SO only excitation (0.0056 N/mm) than during SO&LG excitation (0.0101 N/mm). LG+PL lengthening changed ΔFLG+PL to a larger extent (p = 0.007) during SO excitation (0.0211 N/mm) than during fully passive conditions (0.0157 N/mm). In contrast, changes in ΔFLG+PL in response to LG+PL lengthening during LG excitation (0.0331 N/mm) were similar (p = 0.161) to that during SO&LG excitation (0.0370 N/mm). In all conditions, changes of FSO were lower than those of ΔFLG+PL. This indicates that muscle forces were transmitted not only between LG+PL and SO, but also between LG+PL and other surrounding structures. In addition, epimuscular myofascial force transmission between rat ankle plantar-flexors was enhanced by muscle activation. However, the magnitude of this interaction was limited.

15.
J Appl Physiol (1985) ; 118(4): 427-36, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25539932

RESUMO

In situ studies involving supraphysiological muscle lengths and relative positions have shown that connective tissue linkages connecting adjacent muscles can transmit substantial forces, but the physiological significance is still subject to debate. The present study investigates effects of such epimuscular myofascial force transmission in the rat calf muscles. Unlike previous approaches, we quantified the mechanical interaction between the soleus (SO) and the lateral gastrocnemius and plantaris complex (LG+PL) applying a set of muscle lengths and relative positions corresponding to the range of knee and ankle angles occurring during normal movements. In nine deeply anesthetized Wistar rats, the superficial posterior crural compartment was exposed, and distal and proximal tendons of LG+PL and the distal SO tendon were severed and connected to force transducers. The target muscles were excited simultaneously. We found that SO active and passive tendon force was substantially affected by proximally lengthening of LG+PL mimicking knee extension (10% and 0.8% of maximal active SO force, respectively; P < 0.05). Moreover, SO relative position significantly changed the LG+PL length-force relationship, resulting in nonunique values for passive slack-length and optimum-length estimates. We conclude that also, for physiological muscle conditions, isometric force of rat triceps surae muscles is determined by its muscle-tendon unit length as well as by the length and relative position of its synergists. This has implications for understanding the neuromechanics of skeletal muscle in normal and pathological conditions, as well as for studies relying on the assumption that muscles act as independent force actuators.


Assuntos
Músculo Esquelético/fisiologia , Animais , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Tecido Conjuntivo/fisiologia , Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Masculino , Ratos , Ratos Wistar , Tendões/fisiologia
16.
J Appl Physiol (1985) ; 94(3): 1092-107, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12571138

RESUMO

Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exerted (ratio approximately 118%) after distal than after equal proximal lengthening. For proximal force, the reverse occurred (ratio approximately 157%). Passive EDL force exerted at the lengthened end was 7-10 times the force exerted at the nonlengthened end. While kept at constant length, synergists (tibialis anterior + extensor hallucis longus: active muscle force difference approximately -10%) significantly decreased in force by distal EDL lengthening, but not by proximal EDL lengthening. We conclude that force exerted at the tendon at the lengthened end of a muscle is higher because of the extra load imposed by myofascial force transmission on parts of the muscle belly. This is mediated by changes of the relative position of most parts of the lengthened muscle with respect to neighboring muscles and to compartment connective tissues. As a consequence, muscle relative position is a major codeterminant of muscle force for muscle with connectivity of its belly close to in vivo conditions.


Assuntos
Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Algoritmos , Animais , Calibragem , Tecido Conjuntivo/fisiologia , Eletrodos Implantados , Membro Posterior/fisiologia , Masculino , Contração Muscular/fisiologia , Ratos , Tendões/fisiologia
17.
J Appl Physiol (1985) ; 95(5): 2004-13, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12844495

RESUMO

Force transmission from muscle fibers via the connective tissue network (i.e., myofascial force transmission) is an important determinant of muscle function. This study investigates the role of myofascial pathways for force transmission from multitendoned extensor digitorum longus (EDL) muscle within an intact anterior crural compartment. Effects of length changes exclusively of head III of rat EDL muscle (EDL III) on myofascial force transmission were assessed. EDL III was lengthened at the distal tendon. For different lengths of EDL III, isometric forces were measured at the distal tendon of EDL III, as well as at the proximal tendon of whole EDL and at the distal tendons of tibialis anterior and extensor hallucis longus (TA+EHL) muscles. Lengthening of EDL III caused high changes in force exerted at the distal tendon of EDL III (from 0 to 1.03 +/- 0.07 N). In contrast, only minor changes were found in force exerted at the proximal EDL tendon (from 2.37 +/- 0.09 to 2.53 +/- 0.10 N). Increasing the length of EDL III decreased TA+EHL force significantly (by 7%, i.e., from 5.62 +/- 0.27 to 5.22 +/- 0.32 N). These results show that force is transmitted between EDL III and adjacent tissues via myofascial pathways. Optimal force exerted at the distal tendon of EDL III (1.03 +/- 0.07 N) was more than twice the force expected on the basis of the physiological cross-sectional area of EDL III muscle fibers (0.42 N). Therefore, a substantial fraction of this force must originate from sources other than EDL III. It is concluded that myofascial pathways play an important role in force transmission from multitendoned muscles.


Assuntos
Fáscia/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Animais , Ergometria/instrumentação , Membro Posterior/fisiologia , Masculino , Ratos , Ratos Wistar , Transdutores
18.
J Orthop Res ; 20(4): 863-8, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12168679

RESUMO

Extramuscular connective tissue and muscular fascia have been suggested to form a myo-fascial pathway for transmission of forces over a joint that is additional to the generally accepted myo-tendinous pathway. The consequences of myo-fascial force transmission for the outcome of conventional muscle tendon transfer surgery has not been studied as yet. To test the hypothesis that surgical dissection of a muscle will affect its length-force characteristics, a study was undertaken in adult male Wistar rats. During progressive dissection of the flexor carpi ulnaris muscle, isometric length-force characteristics were measured using maximal electrical stimulation of the ulnar nerve. After fasciotomy, muscle active force decreased by approximately 20%. Further dissection resulted in additional decline of muscle active force by another 40% at maximal dissection. The muscle length at which the muscle produced maximum active force increased by approximately 0.7 mm (i.e. 14% of the measured length range) after dissection. It is concluded that, in rats, the fascia surrounding the flexor carpi ulnaris muscle is a major determinant of muscle length-force characteristics.


Assuntos
Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Tendões/cirurgia , Animais , Fenômenos Biomecânicos , Dissecação , Fasciotomia , Masculino , Ratos , Ratos Wistar , Tendões/fisiologia
19.
J Biomech ; 37(1): 99-110, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14672573

RESUMO

Effects on force of changes of the position of extensor digitorum longus muscle (EDL) relative to surrounding tissues were investigated in rat. Connective tissue at the muscle bellies of tibialis anterior (TA), extensor hallucis longus (EHL) and EDL was left intact, to allow myofascial force transmission. The position of EDL muscle was altered, without changing EDL muscle-tendon complex length, and force exerted at proximal and distal tendons of EDL as well as summed force exerted at the distal tendons of TA and EHL muscles (TA+EHL) were measured. Proximal and distal EDL forces as well as distal TA+EHL force changed significantly on repositioning EDL muscle. These muscle position-force characteristics were assessed at two EDL lengths and two TA+EHL lengths. It was shown that changes of muscle force with length changes of a muscle is the result of the length changes per se, as well as of changes of relative position of parts of the muscle. It is concluded that in addition to length, muscle position relative to its surroundings co-determines isometric muscle force.


Assuntos
Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Animais , Pé/fisiologia , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Wistar , Nervo Isquiático/fisiologia , Estresse Mecânico
20.
J Morphol ; 256(3): 306-21, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12655613

RESUMO

Muscles within the anterior crural compartment (extensor digitorum longus, EDL; tibialis anterior, TA; and extensor hallucis longus, EHL) and within the peroneal compartment were excited simultaneously and maximally. All muscles were kept at constant length with the exception of EDL, for which muscle length was changed by moving its proximal tendon. Active and passive force was measured at proximal as well as distal EDL tendons and at the combined distal tendons of TA and EHL (TA+EHL). In the initial experimental condition, a difference (F(proximal) > F(distal)) in EDL force, amounting to 0-14% of proximal force, was confirmed for most EDL lengths. This is interpreted as a clear proof of extramuscular myofascial force transmission, as no significant EDL length effects could be shown on TA+EHL force. Repeated measurements were confirmed to cause marked changes of both proximal and distal length-force characteristics, such as a shift of the whole ascending limb of the active curve, including optimum length, to higher lengths without decreasing optimum force, and decreasing active force at low lengths (by approximately 57%). Repeated measurements also lowered proximal and distal EDL passive force (by up to 35%). The proximo-distal difference in passive as well as active EDL force was decreased, but persisted. At most lengths, this difference for active force amounted to a constant fraction (14%) of proximal force. TA+EHL force was not affected significantly. Subsequently, acute effects of experimental surgical alterations were studied: The first manipulation was full lateral fasciotomy of the anterior crural compartment that caused a further decrease in active force at the proximal EDL but not at the distal EDL tendon. Passive forces showed no further significant changes. The proximo-distal EDL active force difference decreased to 0-5% of proximal force. After fasciotomy, TA+EHL force increased by 30%. This was interpreted as evidence of increased intramuscular and decreased extramuscular myofascial force transmission. The second manipulation was full isolation of EDL from TA+EHL, but not from extramuscular connective tissues, which caused a further decrease of the EDL proximo-distal force differences, indicating a stiffening effect of the presence of TA+EHL on the extramuscular matrix. For EDL active force the difference was no longer significantly different from zero. In contrast, for EDL passive force the proximo-distal force difference persisted. It is concluded that extramuscular myofascial force transmission is an important feature of the anterior crural compartment. The magnitude of this force transmission requires that it be considered in analysis of muscular function.


Assuntos
Fáscia/fisiologia , Membro Posterior/fisiologia , Contração Muscular/fisiologia , Ratos Wistar/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Tecido Conjuntivo/anatomia & histologia , Estimulação Elétrica , Membro Posterior/anatomia & histologia , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA