Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(1): 108351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430613

RESUMO

Fatty acid oxidation disorders (FAODs) are a family of rare, genetic disorders that affect any part of the fatty acid oxidation pathway. Patients present with severe phenotypes, such as hypoketotic hypoglycemia, cardiomyopathy, and rhabdomyolysis, and currently manage these symptoms by the avoidance of fasting and maintaining a low-fat, high-carbohydrate diet. Because knowledge about FAODs is limited due to the small number of patients, rodent models have been crucial in learning more about these disorders, particularly in studying the molecular mechanisms involved in different phenotypes and in evaluating treatments for patients. The purpose of this review is to present the different FAOD mouse models and highlight the benefits and limitations of using these models. Specifically, we discuss the phenotypes of the available FAOD mouse models, the potential molecular causes of prominent FAOD phenotypes that have been studied using FAOD mouse models, and how FAOD mouse models have been used to evaluate treatments for patients.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos , Erros Inatos do Metabolismo Lipídico , Oxirredução , Animais , Camundongos , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Fenótipo , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/etiologia
2.
J Biol Chem ; 294(28): 11047-11053, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31177094

RESUMO

A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.


Assuntos
Caenorhabditis elegans/metabolismo , Cinurenina/metabolismo , Ubiquinona/análogos & derivados , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrolases/antagonistas & inibidores , Hidrolases/genética , Hidrolases/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Espectrometria de Massas , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Tela Subcutânea/metabolismo , Ubiquinona/análise , Ubiquinona/biossíntese , Ubiquinona/metabolismo
3.
Invest Ophthalmol Vis Sci ; 65(6): 33, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904639

RESUMO

Purpose: Recent studies have shown that the retinal pigment epithelium (RPE) relies on fatty acid oxidation (FAO) for energy, however, its role in overall retinal health is unknown. The only FAO disorder that presents with chorioretinopathy is long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Studying the molecular mechanisms can lead to new treatments for patients and elucidate the role of FAO in the RPE. This paper characterizes the chorioretinopathy progression in a recently reported LCHADD mouse model. Methods: Visual assessments, such as optokinetic tracking and fundus imaging, were performed in wildtype (WT) and LCHADD mice at 3, 6, 10, and 12 months of age. Retinal morphology was analyzed in 12-month retinal cross-sections using hematoxylin and eosin (H&E), RPE65, CD68, and TUNEL staining, whereas RPE structure was assessed using transmission electron microscopy (TEM). Acylcarnitine profiles were measured in isolated RPE/sclera samples to determine if FAO was blocked. Bulk RNA-sequencing of 12 month old male WT mice and LCHADD RPE/sclera samples assessed gene expression changes. Results: LCHADD RPE/sclera samples had a 5- to 7-fold increase in long-chain hydroxyacylcarnitines compared to WT, suggesting an impaired LCHAD step in long-chain FAO. LCHADD mice have progressively decreased visual performance and increased RPE degeneration starting at 6 months. LCHADD RPE have an altered structure and a two-fold increase in macrophages in the subretinal space. Finally, LCHADD RPE/sclera have differentially expressed genes compared to WT, including downregulation of genes important for RPE function and angiogenesis. Conclusions: Overall, this LCHADD mouse model recapitulates early-stage chorioretinopathy seen in patients with LCHADD and is a useful model for studying LCHADD chorioretinopathy.


Assuntos
Modelos Animais de Doenças , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Camundongos Endogâmicos C57BL , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Doenças da Coroide/genética , Doenças da Coroide/metabolismo , Masculino , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia , Microscopia Eletrônica de Transmissão
4.
Invest Ophthalmol Vis Sci ; 65(11): 22, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39283617

RESUMO

Purpose: Progressive choroid and retinal pigment epithelial (RPE) degeneration causing vision loss is a unique characteristic of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), a fatty acid oxidation disorder caused by a common c.1528G>C pathogenic variant in HADHA, the α subunit of the mitochondrial trifunctional protein (TFP). We established and characterized an induced pluripotent stem cell (iPSC)-derived RPE cell model from cultured skin fibroblasts of patients with LCHADD and tested whether addition of wildtype (WT) HAHDA could rescue the phenotypes identified in LCHADD-RPE. Methods: We constructed an rAAV expression vector containing 3' 3xFLAG-tagged human HADHA cDNA under the transcriptional control of the cytomegalovirus (CMV) enhancer-chicken beta actin (CAG) promoter (CAG-HADHA-3XFLAG). LCHADD-RPE were cultured, matured, and transduced with either AAV-GFP (control) or AAV-HADHA-3XFLAG. Results: LCHADD-RPE express TFP subunits and accumulate 3-hydroxy-acylcarnitines, cannot oxidize palmitate, and release fewer ketones than WT-RPE. When LCHADD-RPE are exposed to docosahexaenoic acid (DHA), they have increased oxidative stress, lipid peroxidation, decreased viability, and are rescued by antioxidant agents potentially explaining the pathologic mechanism of RPE loss in LCHADD. Transduced LCHADD-RPE expressing a WT copy of TFPα incorporated TFPα-FLAG into the TFP complex in the mitochondria and accumulated significantly less 3-hydroxy-acylcarnitines, released more ketones in response to palmitate, and were more resistant to oxidative stress following DHA exposure than control. Conclusions: iPSC-derived LCHADD-RPE are susceptible to lipid peroxidation mediated cell death and are rescued by exogenous HADHA delivered with rAAV. These results are promising for AAV-HADHA gene addition therapy as a possible treatment for chorioretinopathy in patients with LCHADD.


Assuntos
Dependovirus , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas , Peroxidação de Lipídeos , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa , Epitélio Pigmentado da Retina , Transfecção , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Dependovirus/genética , Células Cultivadas , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/genética , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/terapia , Proteína Mitocondrial Trifuncional/genética , Proteína Mitocondrial Trifuncional/deficiência , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Terapia Genética/métodos , Cardiomiopatias , Doenças do Sistema Nervoso , Rabdomiólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA