Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 171(1): 109-121, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34050833

RESUMO

Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.


Assuntos
Epidermólise Bolhosa , Qualidade de Vida , Membrana Basal , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa/terapia , Humanos , Pele/patologia
2.
Phys Rev Lett ; 124(9): 093901, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202875

RESUMO

Submicron-thick hexagonal boron nitride crystals embedded in noble metals form planar Fabry-Perot half-microcavities. Depositing Au nanoparticles on top of these microcavities forms previously unidentified angle- and polarization-sensitive nanoresonator modes that are tightly laterally confined by the nanoparticle. Comparing dark-field scattering with reflection spectroscopies shows plasmonic and Fabry-Perot-like enhancements magnify subtle interference contributions, which lead to unexpected redshifts in the dark-field spectra, explained by the presence of these new modes.

3.
Biochemistry (Mosc) ; 85(12): 1570-1577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33705295

RESUMO

The mechanism of oxidative phosphorylation and its regulation remain one of the main problems of bioenergetics. Efficiency of the mitochondrial energization is determined by the relationship between the rate of generation of electrochemical potential of hydrogen ions and the rate of its expenditure on the synthesis of ATP and the use of ATP in endergonic reactions. Uncoupling (partial or complete), which occurs in the process of uncontrolled and controlled leakage of ions through the inner mitochondrial membrane, on the one hand leads to the decrease in the relative synthesis of ATP, and on the other, being consistent with the law of conservation of energy, leads to the formation of heat, generation of which is an essential function of the organism. In addition to increased thermogenesis, the increase of non-phosphorylating oxidation of various substrates is accompanied by the decrease in transmembrane potential, production of reactive oxygen species, and activation of oxygen consumption, water and carbon dioxide production, increase in the level of intracellular ADP and acidification of the cytosol. In this analysis, each of these factors will be considered separately for its role in regulating metabolism.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Termogênese , Animais , Humanos , Mitocôndrias/fisiologia
4.
Plasmid ; 106: 102442, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31669286

RESUMO

Helicobacter pylori, a human pathogen linked to many stomach diseases, is well adapted to colonize aggressive gastric environments, and its virulence factors contribute this adaptation. Here, we report the construction of two novel H. pylori vectors, pSv2 and pSv4, carrying a reporter gene fused to the promoters of virulence factor genes for monitoring the response of single H. pylori cells to various stresses. H. pylori cryptic plasmids were modified by the introduction of the Escherichia coli origin of replication, chloramphenicol resistance cassette, and promoterless gfp gene to produce E. coli/H. pylori shuttle vectors. The promoter regions of vacA and ureA genes encoding well-characterized H. pylori virulence factors were fused to the promoterless gfp gene. Recording the GFP fluorescence signal from the genetically modified H. pylori cells immobilized in specifically designed microfluidic devices revealed the response of transcriptional reporter systems to osmotic stress, acidic stress, elevated Ni2+ concentration or iron chelation. Our observations validate the utility of the pSv2 and pSv4 vectors to monitor the regulation of virulence factor genes in diverse strains and clinical isolates of H. pylori.


Assuntos
Genes Reporter , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori , Estresse Fisiológico/genética , Transcrição Gênica , Dosagem de Genes , Vetores Genéticos/genética , Humanos , Plasmídeos/genética , Regiões Promotoras Genéticas , Transformação Bacteriana
5.
Biochemistry (Mosc) ; 84(12): 1502-1512, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31870254

RESUMO

Autophagy plays an important role in the pathogenesis of acute kidney injury (AKI). Although autophagy activation was shown to be associated with an increased lifespan and beneficial effects in various pathologies, the impact of autophagy activators, particularly, rapamycin and its analogues on AKI remains obscure. In our study, we explored the effects of rapamycin treatment in in vivo and in vitro models of ischemic and cisplatin-induced AKI. The impact of rapamycin on the kidney function after renal ischemia/reperfusion (I/R) or exposure to the nephrotoxic agent cisplatin was assessed by quantifying blood urea nitrogen and serum creatinine and evaluating the content of neutrophil gelatinase-associated lipocalin, a novel biomarker of AKI. In vitro experiments were performed on the primary culture of renal tubular cells (RTCs) that were subjected to oxygen-glucose deprivation (OGD) or incubated with cisplatin under various rapamycin treatment protocols. Cell viability and proliferation were estimated by the MTT assay and real-time cell analysis using an RTCA iCELLigence system. Although rapamycin inhibited mTOR (mammalian target of rapamycin) signaling, it failed to enhance the autophagy and to ameliorate the severity of AKI caused by ischemia or cisplatin-induced nephrotoxicity. Experiments with RTCs demonstrated that rapamycin exhibited the anti-proliferative effect in primary RTCs cultures but did not protect renal cells exposed to OGD or cisplatin. Our study revealed for the first time that the mTOR inhibitor rapamycin did not prevent AKI caused by renal I/R or cisplatin-induced nephrotoxicity and, therefore, cannot be considered as an ideal mimetic of the autophagy-associated nephroprotective mechanisms (e.g., those induced by caloric restriction), as it had been suggested earlier. The protective action of such approaches like caloric restriction might not be limited to mTOR inhibition and can proceed through more complex mechanisms involving alternative autophagy-related targets. Thus, the use of rapamycin and its analogues for the treatment of various AKI forms requires further studies in order to understand potential protective or adverse effects of these compounds in different contexts.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Isquemia/prevenção & controle , Sirolimo/farmacologia , Injúria Renal Aguda/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Isquemia/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Serina-Treonina Quinases TOR/metabolismo
6.
Analyst ; 143(3): 606-619, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29214270

RESUMO

Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (µTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.

7.
Biochemistry (Mosc) ; 83(5): 534-541, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29738687

RESUMO

Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.


Assuntos
Escherichia coli/classificação , Escherichia coli/genética , Antígenos O/química , Antígenos O/genética , Configuração de Carboidratos , Escherichia coli/metabolismo , Glicosilação , Antígenos O/metabolismo
8.
Biochemistry (Mosc) ; 82(9): 1006-1016, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28988529

RESUMO

Remote ischemic preconditioning of hind limbs (RIPC) is an effective method for preventing brain injury resulting from ischemia. However, in numerous studies RIPC has been used on the background of administered anesthetics, which also could exhibit neuroprotective properties. Therefore, investigation of the signaling pathways triggered by RIPC and the effect of anesthetics is important. In this study, we explored the effect of anesthetics (chloral hydrate and Zoletil) on the ability of RIPC to protect the brain from injury caused by ischemia and reperfusion. We found that RIPC without anesthesia resulted in statistically significant decrease in neurological deficit 24 h after ischemia, but did not affect the volume of brain injury. Administration of chloral hydrate or Zoletil one day prior to brain ischemia produced a preconditioning effect by their own, decreasing the degree of neurological deficit and lowering the volume of infarct with the use of Zoletil. The protective effects observed after RIPC with chloral hydrate or Zoletil were similar to those observed when only the respective anesthetic was used. RIPC was accompanied by significant increase in the level of brain proteins associated with the induction of ischemic tolerance such as pGSK-3ß, BDNF, and HSP70. However, Zoletil did not affect the level of these proteins 24 h after injection, and chloral hydrate caused increase of only pGSK-3ß. We conclude that RIPC, chloral hydrate, and Zoletil produce a significant neuroprotective effect, but the simultaneous use of anesthetics with RIPC does not enhance the degree of neuroprotection.


Assuntos
Anestésicos/uso terapêutico , Lesões Encefálicas/etiologia , Isquemia Encefálica/complicações , Precondicionamento Isquêmico , Fármacos Neuroprotetores/uso terapêutico , Anestésicos/farmacologia , Animais , Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/terapia , Hidrato de Cloral/farmacologia , Hidrato de Cloral/uso terapêutico , Combinação de Medicamentos , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Tiletamina/farmacologia , Tiletamina/uso terapêutico , Resultado do Tratamento , Zolazepam/farmacologia , Zolazepam/uso terapêutico
9.
Biochemistry (Mosc) ; 82(12): 1549-1556, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29486705

RESUMO

Current methods for treatment of cellular and organ pathologies are extremely diverse and constantly evolving, going beyond the use of drugs, based on chemical interaction with biological targets to normalize the functions of the system. Because pharmacological approaches are often untenable, recent strategies in the therapy of different pathological conditions are of particular interest through introducing into the organism of some living system or its components, in particular, bacteria or isolated subcellular structures such as mitochondria. This review describes the most interesting and original examples of therapy using bacteria and mitochondria, which in perspective can dramatically change our views on the principles for the treatment of many diseases. Thus, we analyze such therapeutic effects from the perspective of the similarities between mitochondria and bacteria as the evolutionary ancestors of mitochondria.


Assuntos
Infecções/terapia , Mitocôndrias/transplante , Bdellovibrio/fisiologia , Humanos , Intestinos/microbiologia , Infecções por Klebsiella/terapia , Microbiota , Mitocôndrias/fisiologia
10.
Mol Biol (Mosk) ; 51(5): 870-880, 2017.
Artigo em Russo | MEDLINE | ID: mdl-29116075

RESUMO

Profiles of alternative mRNA isoforms have been determined in three brain regions of rats from an aggressive and a tame line selected for 74 generations. Among 2319 genes with alternatively spliced exons, approximately 84% were confirmed by analyzing public databases. Based on Gene Ontology-guided clustering of alternatively spliced genes, it has been found that the sample was enriched in synapse-specific genes (FDR < 10^(-17)). Patterns of gene expression in the brains of animals with genetically determined high or low aggression were more frequently found to differ in the use of alternatively spliced exons than in animals environmentally conditioned for increased or lowered propensity to aggression. For the Adcyap1r1 gene, five alternatively spliced mRNA isoforms have been represented differentially in aggressive animals. A detailed analysis of the gene that encodes glutamate ionotropic receptor NMDA type subunit 1 (Grin1) has confirmed significant differences in the levels of its alternatively spliced isoforms in certain brain regions of tame and aggressive rats. These differences may affect the behavior in rats genetically selected for aggression levels.


Assuntos
Agressão , Processamento Alternativo , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Animais , Masculino , RNA Mensageiro/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Seleção Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA