Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(9): 3481-3492, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37017242

RESUMO

The calculation of so-called "brain age" from structural MRIs has been an emerging biomarker in aging research. Data suggests that discrepancies between chronological age and the predicted age of the brain may be predictive of mortality and morbidity (for review, see Cole, Marioni, Harris, & Deary, 2019). However, with these promising results come technical complexities of how to calculate brain age. Various groups have deployed methods leveraging different statistical approaches, often crafting novel algorithms for assessing this biomarker derived from structural MRIs. There remain many open questions about the reliability, collinearity, and predictive power of different algorithms. Here, we complete a rigorous systematic comparison of three commonly used, previously published brain age algorithms (XGBoost, brainageR, and DeepBrainNet) to serve as a foundation for future applied research. First, using multiple datasets with repeated structural MRI scans, we calculated two metrics of reliability (intraclass correlations and Bland-Altman bias). We then considered correlations between brain age variables, chronological age, biological sex, and image quality. We also calculated the magnitude of collinearity between approaches. Finally, we used machine learning approaches to identify significant predictors across brain age algorithms related to clinical diagnoses of cognitive impairment. Using a large sample (N = 2557), we find all three commonly used brain age algorithms demonstrate excellent reliability (r > .9). We also note that brainageR and DeepBrainNet are reasonably correlated with one another, and that the XGBoost brain age is strongly related to image quality. Finally, and notably, we find that XGBoost brain age calculations were more sensitive to the detection of clinical diagnoses of cognitive impairment. We close this work with recommendations for future research studies focused on brain age.


Assuntos
Algoritmos , Encéfalo , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Demografia
2.
Brain Inform ; 11(1): 9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573551

RESUMO

Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neurodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland-Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed greatest robustness and reliability (ICCs = 0.956-0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Furthermore, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algorithms is critical to use brain age as a biomarker relevant for clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA