Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 152(9): 094505, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480749

RESUMO

This paper studies numerically the solid phase of a system of particles interacting by the exponentially repulsive pair potential, which is a face-centered cubic (fcc) crystal at low densities and a body-centered cubic (bcc) crystal at higher densities [U. R. Pedersen et al., J. Chem. Phys. 150, 174501 (2019)]. Structure is studied via the pair-distribution function and dynamics via the velocity autocorrelation function and the phonon density of states. These quantities are evaluated along isotherms, isochores, and three isomorphs in both crystal phases. Isomorphs are traced out by integrating the density-temperature relation characterizing configurational adiabats, starting from state points in the middle of the fcc-bcc coexistence region. Good isomorph invariance of structure and dynamics is seen in both crystal phases, which is notable in view of the large density variations studied. This is consistent with the fact that the virial potential-energy correlation coefficient is close to unity in the entire fcc phase and in most of the bcc phase (basically below the re-entrant density). Our findings confirm that the isomorph theory, developed and primarily studied for liquids, applies equally well for solids.

2.
J Chem Phys ; 149(11): 114502, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30243289

RESUMO

This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I [A. K. Bacher et al., J. Chem. Phys. 149, 114501 (2018)] with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP system's strong virial potential-energy correlations, the reduced-unit structure and dynamics are isomorph invariant to a good approximation. Three methods for generating isomorphs are compared: the small-step method that is exact in the limit of small density changes and two versions of the direct-isomorph-check method that allows for much larger density changes. Results from the latter two approximate methods are compared to those of the small-step method for each of the three isomorphs generated by 230 one percent density changes, covering one decade of density variation. Both approximate methods work well.

3.
J Chem Phys ; 149(11): 114501, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30243291

RESUMO

It was recently shown that the exponentially repulsive EXP pair potential defines a system of particles in terms of which simple liquids' quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun. 5, 5424 (2014); J. C. Dyre, J. Phys.: Condens. Matter 28, 323001 (2016)]. This paper and its companion [A. K. Bacher et al., J. Chem. Phys. 149, 114502 (2018)] present a detailed simulation study of the EXP system. Here we study how structure monitored by the radial distribution function and dynamics monitored by the mean-square displacement as a function of time evolve along the system's isotherms and isochores. The focus is on the gas and liquid phases, which are distinguished pragmatically by the absence or presence of a minimum in the radial distribution function above its first maximum. A constant-potential-energy (NVU)-based proof of quasiuniversality is presented, and quasiuniversality is illustrated by showing that the structure of the Lennard-Jones system at four state points is well approximated by those of EXP pair-potential systems with the same reduced diffusion constant. Paper II studies the EXP system's isomorphs, focusing also on the gas and liquid phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA