Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 30(3): 604-613, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633508

RESUMO

The increased expression of vascular endothelial growth factor (VEGF) and its receptors is associated with angiogenesis in a growing tumor, presenting potential targets for tumor-selective imaging by way of targeted tracers. Though fluorescent tracers are used for targeted in vivo imaging, the lack of photostability and biocompatibility of many current fluorophores hinder their use in several applications involving long-term, continuous imaging. To address these problems, fluorescent nanodiamonds (FNDs), which exhibit infinite photostability and excellent biocompatibility, were explored as fluorophores in tracers for targeting VEGF receptors in growing tumors. To explore FND utility for imaging tumor VEGF receptors, we used click-chemistry to conjugate multiple copies of an engineered single-chain version of VEGF site-specifically derivatized with trans-cyclooctene (scVEGF-TCO) to 140 nm FND. The resulting targeting conjugates, FND-scVEGF, were then tested for functional activity of the scVEGF moieties through biochemical and tissue culture experiments and for selective tumor uptake in Balb/c mice with induced 4T1 carcinoma. We found that FND-scVEGF conjugates retain high affinity to VEGF receptors in cell culture experiments and observed preferential accumulation of FND-scVEGF in tumors relative to untargeted FND. Microspectroscopy provided unambiguous determination of FND within tissue by way of the unique spectral shape of nitrogen-vacancy induced fluorescence. These results validate and invite the use of targeted FND for diagnostic imaging and encourage further optimization of FND for fluorescence brightness.


Assuntos
Corantes Fluorescentes/química , Nanodiamantes/química , Neoplasias/diagnóstico por imagem , Receptores de Fatores de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/química , Animais , Química Click , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Imagem Óptica/métodos
2.
Pharm Res ; 32(11): 3746-3755, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26078000

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) is widely used for diagnostic imaging in preclinical studies and in clinical settings. Considering the intrinsic low sensitivity and poor specificity of standard MRI contrast agents, the enhanced delivery of MRI tracers into tumors is an important challenge to be addressed. This study was intended to investigate whether delivery of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by liposomal SPION formulations for either "passive" delivery into tumor via the enhanced permeability and retention (EPR) effect or "active" targeted delivery to tumor endothelium via the receptors for vascular endothelial growth factor (VEGFRs). METHODS: In vivo MRI of orthotopic MDA-MB-231 tumors was performed on a preclinical 9.4 T MRI scanner following intravenous administration of either free/non-targeted or targeted liposomal SPIONs. RESULTS: In vivo MRI study revealed that only the non-targeted liposomal formulation provided a statistically significant accumulation of SPIONs in the tumor at four hours post-injection. The EPR effect contributes to improved accumulation of liposomal SPIONs in tumors compared to the presumably more transient retention during the targeting of the tumor vasculature via VEGFRs. CONCLUSIONS: A non-targeted liposomal formulation of SPIONs could be the optimal option for MRI detection of breast tumors and for the development of therapeutic liposomes for MRI-guided therapy.


Assuntos
Meios de Contraste/química , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/patologia , Imagem Molecular/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Imuno-Histoquímica , Lipossomos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Med ; 13(4): 504-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17351626

RESUMO

We describe a new generation of protein-targeted contrast agents for multimodal imaging of the cell-surface receptors for vascular endothelial growth factor (VEGF). These receptors have a key role in angiogenesis and are important targets for drug development. Our probes are based on a single-chain recombinant VEGF expressed with a cysteine-containing tag that allows site-specific labeling with contrast agents for near-infrared fluorescence imaging, single-photon emission computed tomography or positron emission tomography. These probes retain VEGF activities in vitro and undergo selective and highly specific focal uptake into the vasculature of tumors and surrounding host tissue in vivo. The fluorescence contrast agent shows long-term persistence and co-localizes with endothelial cell markers, indicating that internalization is mediated by the receptors. We expect that multimodal imaging of VEGF receptors with these probes will be useful for clinical diagnosis and therapeutic monitoring, and will help to accelerate the development of new angiogenesis-directed drugs and treatments.


Assuntos
Meios de Contraste , Diagnóstico por Imagem , Neovascularização Fisiológica/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microscopia Confocal , Microscopia de Fluorescência/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
4.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786004

RESUMO

Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein-protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics.


Assuntos
Inibidores de Checkpoint Imunológico , Peptídeos , Proteína 2 Ligante de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Peptídeos/química , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/antagonistas & inibidores , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Ligação Proteica , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Sítios de Ligação , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
5.
Arterioscler Thromb Vasc Biol ; 32(8): 1849-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22723442

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) signaling plays a key role in the pathogenesis of vascular remodeling, including graft arteriosclerosis. Graft arteriosclerosis is the major cause of late organ failure in cardiac transplantation. We used molecular near-infrared fluorescent imaging with an engineered Cy5.5-labeled single-chain VEGF tracer (scVEGF/Cy) to detect VEGF receptors and vascular remodeling in human coronary artery grafts by molecular imaging. METHODS AND RESULTS: VEGF receptor specificity of probe uptake was shown by flow cytometry in endothelial cells. In severe combined immunodeficiency mice, transplantation of human coronary artery segments into the aorta followed by adoptive transfer of allogeneic human peripheral blood mononuclear cells led to significant neointima formation in the grafts over a period of 4 weeks. Near-infrared fluorescent imaging of transplant recipients at 4 weeks demonstrated focal uptake of scVEGF/Cy in remodeling artery grafts. Uptake specificity was demonstrated using an inactive homolog of scVEGF/Cy. scVEGF/Cy uptake predominantly localized in the neointima of remodeling coronary arteries and correlated with VEGF receptor-1 but not VEGF receptor-2 expression. There was a significant correlation between scVEGF/Cy uptake and transplanted artery neointima area. CONCLUSIONS: Molecular imaging of VEGF receptors may provide a noninvasive tool for detection of graft arteriosclerosis in solid organ transplantation.


Assuntos
Arteriosclerose/diagnóstico , Transplante de Coração/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Carbocianinas , Células Cultivadas , Vasos Coronários/patologia , Feminino , Citometria de Fluxo , Humanos , Camundongos , Imagem Molecular
6.
J Am Heart Assoc ; 10(1): e016696, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33327730

RESUMO

Background Expression of receptor for advanced glycation end products (RAGE) plays an important role in diabetic peripheral artery disease. We proposed to show that treatment with an antibody blocking RAGE would improve hind limb perfusion and muscle viability in diabetic pig with femoral artery (FA) ligation. Methods and Results Purpose-bred diabetic Yucatan minipigs with average fasting blood sugar of 357 mg/dL on insulin to maintain a glucose range of 300 to 500 mg/dL were treated with either a humanized monoclonal anti-RAGE antibody (CR-3) or nonimmune IgG. All pigs underwent intravascular occlusion of the anterior FA. Animals underwent (201Tl) single-photon emission computed tomography/x-ray computed tomography imaging on days 1 and 28 after FA occlusion, angiogenesis imaging with [99mTc]dodecane tetra-acetic acid-polyethylene glycol-single chain vascular endothelial growth factor (scVEGF), muscle biopsies on day 7, and contrast angiogram day 28. Results showed greater increases in perfusion to the gastrocnemius from day 1 to day 28 in CR-3 compared with IgG treated pigs (P=0.0024), greater uptake of [99mTc]dodecane tetra-acetic acid-polyethylene glycol-scVEGF (scV/Tc) in the proximal gastrocnemius at day 7, confirmed by tissue staining for capillaries and vascular endothelial growth factor A, and less muscle loss and fibrosis at day 28. Contrast angiograms showed better reconstitution of the distal FA from collaterals in the CR-3 versus IgG treated diabetic pigs (P=0.01). The gastrocnemius on nonoccluded limb at necropsy had higher 201Tl uptake (percentage injected dose per gram) and reduced RAGE staining in arterioles in CR-3 treated compared with IgG treated animals (P=0.04). Conclusions A novel RAGE-blocking antibody improved hind limb perfusion and angiogenesis in diabetic pigs with FA occlusion. Contributing factors are increased collaterals and reduced vascular RAGE expression. CR-3 shows promise for clinical treatment in diabetic peripheral artery disease.


Assuntos
Indutores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Angiopatias Diabéticas , Doença Arterial Periférica , Receptor para Produtos Finais de Glicação Avançada , Angiografia/métodos , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Descoberta de Drogas/métodos , Produtos Finais de Glicação Avançada/metabolismo , Membro Posterior/irrigação sanguínea , Músculo Esquelético/irrigação sanguínea , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/etiologia , Doença Arterial Periférica/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/imunologia , Suínos , Porco Miniatura , Resultado do Tratamento
7.
Mol Imaging Biol ; 23(3): 340-349, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33156495

RESUMO

PURPOSE: Metastatic breast cancer is the second leading cause of cancer-related death in women. The 5-year survival rate for metastatic breast cancer has remained near 26.9 % for over a decade. The recruitment of hematopoietic stem cells with high expression of the vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in early stages of metastasis formation. We propose the use of an 18F-labeled single-chain version of VEGF121, re-engineered to be selective for VEGFR-1 (scVR1), as a positron emission tomography (PET) imaging agent to non-invasively image early-stage metastases. PROCEDURES: scVR1 was 18F-labeled via a biorthogonal click reaction between site-specifically trans-cyclooctene functionalized scVR1 and an Al18F labeled tetrazine-NODA (1,4,7-triazacyclononane-1,4-diiacetic acid). The [18F]AlF-NODA-scVR1 was purified using a PD10 column and subsequently analyzed on HPLC to determine radiochemical purity. Animal experiments were performed in 6-8-week-old female BALB/c mice bearing orthotopic primary 4T1 breast tumors or 4T1 metastatic lesions. The [18F]AlF-NODA-scVR1 tracer was administered via tail vein injection; PET imaging and ex vivo analysis was performed 2 h post-injection. RESULTS: The [18F]AlF-NODA-scVR1 was prepared with a 98.2 ± 1.5 % radiochemical purity and an apparent molar activity of 7.5 ± 1.2 GBq/µmol. The specific binding of scVR1 to VEGFR-1 was confirmed via bead-based assay. The ex vivo biodistribution showed tumor uptake of 3.5 ± 0.5 % ID/g and was readily observable in PET images. Metastasis formation was detected with [18F]AlF-NODA-scVR1 tracer showing colocalization with bioluminescent imaging as well as ex vivo autoradiography and immunofluorescent staining of VEGFR-1. CONCLUSIONS: The diagnostic capabilities of the [18F]AlF-NODA-scVR1 PET tracer was confirmed in both orthotopic and metastatic murine cancer models. These results support the potential use of [18F]AlF-NODA-scVR1 as a PET tracer that could image metastases, providing clinicians with an additional tool to assess a patient's need for adjuvant therapies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Radioisótopos de Flúor/química , Células-Tronco Hematopoéticas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Mutação , Metástase Neoplásica , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Compostos Heterocíclicos com 1 Anel/química , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons
8.
Arterioscler Thromb Vasc Biol ; 29(10): 1452-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19574559

RESUMO

OBJECTIVE: Mural inflammation and neovascularization are characteristic pathological features of abdominal aortic aneurysm (AAA) disease. Vascular endothelial growth factor receptor (VEGFR) expression may also mediate AAA growth and rupture. We examined VEGFR expression as a function of AAA disease progression in the Apolipoprotein E-deficient (Apo E(-/-)) murine AAA model. METHODS AND RESULTS: Apo E(-/-) mice maintained on a high-fat diet underwent continuous infusion with angiotensin II at 1000 ng/kg/min (Ang II) or vehicle (Control) via subcutaneous osmotic pump. Serial transabdominal ultrasound measurements of abdominal aortic diameter were recorded (n=16 mice, 3 to 4 time points per mouse) for up to 28 days. Near-infrared receptor fluorescent (NIRF) imaging was performed on Ang II mice (n=9) and Controls (n=5) with scVEGF/Cy, a single-chain VEGF homo-dimer labeled with Cy 5.5 fluorescent tracer (7 to 18 microg/mouse IV). NIRF with inactivated single chain VEGF/Cy tracer (scVEGF/In, 18 microg/mouse IV) was performed on 2 additional Ang II mice to control for nonreceptor-mediated tracer binding and uptake. After image acquisition and sacrifice, aortae were harvested for analysis. An additional AAA mouse cohort received either an oral angiogenesis inhibitor or suitable negative or positive controls to clarify the significance of angiogenesis in experimental aneurysm progression. Aneurysms developed in the suprarenal aortic segment of all Ang II mice. Significantly greater fluorescent signal was obtained from aneurysmal aorta as compared to remote, uninvolved aortic segments in Ang II scVEGF/Cy mice or AAA in scVEGF/In mice or suprarenal aortic segments in Control mice. Signal intensity increased in a diameter-dependent fashion in aneurysmal segments. Immunostaining confirmed mural VEGFR-2 expression in medial smooth muscle cells. Treatment with an angiogenesis inhibitor attenuated AAA formation while decreasing mural macrophage infiltration and CD-31(+) cell density. CONCLUSIONS: Mural VEGFR expression, as determined by scVEGF/Cy fluorescent imaging and VEGFR-2 immunostaining, increases in experimental AAAs in a diameter-dependent fashion. Angiogenesis inhibition limits AAA progression. Clinical VEGFR expression imaging strategies, if feasible, may improve real-time monitoring of AAA disease progression and response to suppressive strategies.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/análise , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Inibidores da Angiogênese/uso terapêutico , Animais , Aneurisma da Aorta Abdominal/tratamento farmacológico , Apolipoproteínas E/deficiência , Modelos Animais de Doenças , Doxiciclina/uso terapêutico , Fluorescência , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/complicações
9.
EJNMMI Res ; 10(1): 48, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399850

RESUMO

BACKGROUND: New therapies to treat diabetic peripheral artery disease (PAD) require target-specific non-invasive imaging modalities to follow efficacy. As a translational study, we performed targeted imaging of receptors for vascular endothelial growth factor (VEGF) in response to anterior femoral artery occlusion (FAO) in Yucatan minipigs and compare the normal response to response in diabetic Yucatan minipigs. METHODS: Eleven Yucatan minipigs, 6 non-diabetic (non-D) and 5 purpose bred diabetic (D) (Sinclair, Auxvasse MO), underwent intravascular total occlusion of the anterior femoral artery (FA). At days 1 and 28, pigs underwent SPECT/CT 201Tl hindlimb perfusion imaging and at day 7 were injected with [99mTc]DOTA-PEG-scVEGF (scV/Tc) tracer targeting VEGF receptor, and underwent biopsies of the hindlimb muscles for gamma counting and histology, followed by imaging. One day after the final scan, pigs underwent contrast angiography of the lower extremities. Counts from scans were converted to percentage injected activity (%IA). RESULTS: Perfusion was lower in the occluded hindlimb compared to non-occluded on day 1 in both the D and non-D pigs. At day 7, scV/Tc count ratio of counts from ROIs drawn in proximal gastrocnemius muscle for the occluded over non-occluded limb was significantly higher in non-D vs. D pigs (1.32 ± 0.06 vs. 1.04 ± 0.13, P = 0.02) reflecting higher level of angiogenesis. Perfusion increased between days 1 and 28 in the muscles in the occluded limb for the non-diabetic pigs while the diabetic pig showed no increase (+ 0.13 ± 0.08 %IA vs. - 0.13 ± 0.11, P = 0.003). The anterior FA showed poor contrast filling beyond occluder and qualitatively fewer bridging collaterals compared to non-D pigs at 28 days. CONCLUSION: VEGF receptor targeted imaging showed the effects of diabetes to suppress angiogenesis in response to occlusion of the anterior femoral artery of purpose bred diabetic Yucatan minipigs and indicates potential applicability as a marker to follow efficacy of novel therapies to improve blood flow by stimulating angiogenesis in diabetic PAD.

10.
Bioconjug Chem ; 20(4): 742-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19320434

RESUMO

We describe a new generation of tracers for molecular imaging of the cell surface receptors for epidermal growth factor (EGF). These receptors play a key role in the progression of many tumors and are major drug development targets. Our tracers are based on a recombinant human EGF expressed with a cysteine-containing tag that enables facile site-specific radiolabeling with (99m)Tc for single photon emission computed tomography or site-specific conjugation of (64)Cu PEGylated chelators for positron emission tomography. These tracers retain EGF activities in vitro and display selective and highly specific focal uptake in tumors in vivo. We expect that nuclear imaging of EGF receptors with these tracers will be useful for clinical diagnosis, therapeutic monitoring, and development of new drugs and treatment regimens.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/análise , Multimerização Proteica , Estrutura Quaternária de Proteína , Animais , Autorradiografia , Sítios de Ligação , Linhagem Celular Tumoral , Quelantes/química , Cistina/química , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/farmacocinética , Receptores ErbB/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos , Compostos de Organotecnécio/química , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Ratos , Coloração e Rotulagem , Especificidade por Substrato , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
11.
Bioconjug Chem ; 19(5): 1049-54, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18407683

RESUMO

Angiogenesis is a fundamental feature of tumor development, and therefore, the tracers for molecular imaging of specific angiogenic biomarkers are expected to be useful for diagnostics, patient monitoring, and drug development. We have created a new class of imaging agents based on the most important mediator of angiogenesis, vascular endothelial growth factor (VEGF). Our latest version is a single-chain (sc) VEGF protein containing an N-terminal Cys-tag designed for site-specific modification with a variety of imaging and therapeutic moieties. We have recently found that the Cys-tag itself can form a stable chelate with (99m)Tc using tin-tricine as an exchange reagent. This self-chelation approach yields a highly stable and fully functional form of radiolabeled scVEGF that can be used as a SPECT tracer for tumor angiogenesis. Also of note is that directly labeled scVEGF has less than one-half the nonspecific renal uptake of (99m)Tc-HYNIC-scVEGF. The simple production of scVEGF for direct chelation of (99m)Tc makes it a promising molecular imaging agent for the oncology clinic.


Assuntos
Cisteína/química , Compostos Radiofarmacêuticos/química , Coloração e Rotulagem/métodos , Tecnécio/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Especificidade de Órgãos , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/farmacocinética
12.
Methods Mol Biol ; 494: 275-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18726580

RESUMO

Targeted delivery of therapeutic and imaging agents requires conjugation of a corresponding payload to a targeting peptide or protein. The ideal procedure should yield a uniform preparation of functionally active conjugates and be translatable for development of clinical products. We describe here our experience with site-specific protein modification via a novel cysteine-containing fusion tag (Cys-tag), which is a 15-amino-acid (aa) N-terminal fragment of human ribonuclease I with the R4C substitution. Several Cys-tagged proteins and peptides with different numbers of native cysteines were expressed and refolded into functionally active conformation, indicating that the tag does not interfere with the formation of internal disulfide bonds. We also describe standardized procedures for site-specific conjugation of very different payloads, such as functionalized lipids and liposomes, radionuclide chelators and radionuclides, fluorescent dyes, drug-derivatized dendrimers, scaffold proteins, biotin, and polyethyleneglycol to Cys-tagged peptides and proteins, as well as present examples of functional activity of targeted conjugates in vitro and in vivo. We expect that Cys-tag would provide new opportunities for development of targeted therapeutic and imaging agents for research and clinical use.


Assuntos
Cisteína/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Humanos , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética
13.
ILAR J ; 49(1): 78-88, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18172335

RESUMO

Increasing sophistication in the design and application of biological models as well as the advent of novel fluorescent probes have led to new demands on molecular imaging systems to deliver enhanced sensitivity, reliable quantitation, and the ability to resolve multiple simultaneous signals. Sensitivity is limited, especially in the visible spectral range, by the presence of ubiquitous autofluorescence signals (mostly arising from the skin and gut), which need to be separated from those of targeted fluorophores. Fluorescence-based imaging is also affected by absorbing and scattering properties of tissue in both the visible and to a lesser extent the near-infrared (NIR) regions. However, the small size of typical animal models (usually mice) often permits the detection of enough light arising even from relatively deep locations to allow the capture of signals with an acceptable signal-to-noise ratio. Multispectral imaging, through its ability to separate autofluorescence from label fluorescence, can increase sensitivity as much as 300 times compared to conventional approaches, and concomitantly improve quantitative accuracy. In the NIR region, autofluorescence, while still significant, poses less of a problem. However, the task of disentangling signals from multiple fluorophores remains. Multispectral imaging allows the separation of five or more fluorophores, with each signal quantitated and visualized separately. Preclinical small animal imaging is often accompanied by microscopic analysis, both before and after the in vivo phase. This can involve tissue culture manipulations and/or histological examination of fixed or frozen tissue. Due to the same advantages in sensitivity, quantitation, and multiplexing, microscopy-based multispectral techniques form an excellent complement to in vivo imaging.


Assuntos
Fluorescência , Microscopia de Fluorescência/métodos , Animais , Corantes Fluorescentes/química , Aumento da Imagem/métodos , Camundongos , Reprodutibilidade dos Testes
14.
Mol Imaging Biol ; 20(1): 85-93, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28421362

RESUMO

PURPOSE: Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE-/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. PROCEDURES: Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE-/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. RESULTS: Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. CONCLUSIONS: Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/metabolismo , Imagem Molecular/métodos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Aterosclerose/patologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Masculino , Camundongos , Polietilenoglicóis/química , Anticorpos de Cadeia Única , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
15.
Mol Imaging Biol ; 20(6): 963-972, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29687324

RESUMO

PURPOSE: To compare targeted imaging of vascular endothelial growth factor (VEGF) receptors vs. αvß3 integrins in a mouse hindlimb ischemia model of peripheral artery disease. PROCEDURES: Male wild-type (WT) C57BL/6 mice (8- to 10-week old) (n = 24) underwent left femoral artery ligation. The right leg served as control. Five days later, mice were injected with either VEGF receptor targeting [99mTc]DOTA-PEG-scVEGF ([99mTc]scV) (n = 8) or with αvß3-targeting tracer [99mTc]HYNIC-cycloRGD ([99mTc]RGD) (n = 8) and underwent single photon emission computed tomography (SPECT) x-ray computed tomography imaging. To assess non-specific [99mTc]scV uptake, six additional mice received a mixture of [99mTc]scV and 30-fold excess of targeting protein, scVEGF. Tracer uptake as %ID was measured using volumetric regions encompassing the hindlimb muscles and as %ID/g from harvested limb muscles. Double and triple immunofluorescent analysis on tissue sections established localization of αvß3, VEGFR-1, VEGFR-2, as well as certain cell lineage markers. RESULTS: Tracer uptake, as %ID/g, was higher in ligated limbs of mice injected with [99mTc]scV compared to ligated hindlimbs in mice injected with [99mTc]RGD (p = 0.02). The ratio of tracer uptake for ligated/control hindlimb was borderline higher for [99mTc]scV than for [99mTc]RGD (p = 0.06). Immunofluorescent analysis showed higher prevalence of VEGFR-1, VEGFR-2, and αvß3, in damaged vs. undamaged hindlimb tissue, but with little co-localization of these markers. Double immunofluorescent staining showed partial co-localization of VEGFR-1, VEGFR-2, and αvß3, with endothelial cell marker FVIII, but not with CD31. Immunostaining for VEGFR-1 and VEGFR-2 additionally co-localized with lineage markers for endothelial progenitor cell and monocytes/macrophages, with a more diverse pattern of co-localization for VEGFR-2. CONCLUSION: In a mouse hindlimb ischemia model of peripheral artery disease, [99mTc]scV SPECT tracer-targeting VEGF receptors showed a more robust signal than [99mTc]RGD tracer-targeting αvß3. Immunofluorescent analysis suggests that uptake of [99mTc]scV and [99mTc]RGD in damaged tissue is due to non-overlapping cell populations and reflects different dynamic processes and that enhanced uptake of [99mTc]scV may be due to the presence of VEGF receptors on additional cell types.


Assuntos
Membro Posterior/irrigação sanguínea , Integrina alfaVbeta3/metabolismo , Isquemia/diagnóstico por imagem , Isquemia/metabolismo , Imagem Molecular/métodos , Doença Arterial Periférica/diagnóstico por imagem , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Membro Posterior/patologia , Isquemia/patologia , Masculino , Camundongos Endogâmicos C57BL , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia
16.
Methods Mol Biol ; 1522: 83-92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837532

RESUMO

We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" interactions between two mutated fragments of human RNase I, a 1-15 aa fragment with the R4C amino acid substitution (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complementary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.


Assuntos
Bioquímica/métodos , Substituição de Aminoácidos , Cromatografia de Afinidade , Proteínas Imobilizadas/química , Lipídeos/química , Lipossomos/química , Peptídeos/química , Polietilenoglicóis/química , Ribonuclease Pancreático/metabolismo
17.
Biomaterials ; 27(31): 5452-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16843524

RESUMO

Developing tissue engineering scaffolds with immobilized growth factors requires facile and reliable methods for the covalent attachment of functionally active proteins. We describe here a new approach to immobilize recombinant proteins based on expression of the protein of interest with a 15-aa long fusion tag (Cys-tag), which avails a free sulfhydryl group for site-specific conjugation. To validate this approach, we conjugated a single-chain vascular endothelial growth factor expressed with an N-terminal Cys-tag (scVEGF) to fibronectin (FN) using a common thiol-directed bi-functional cross-linking agent. We found that the FN-scVEGF conjugate retains VEGF activity similar to that of free scVEGF when used as a soluble ligand. Cells expressing VEGF receptor VEGFR-2 grown on plates coated with FN-scVEGF displayed morphological phenotypes similar to those observed for cells grown on FN in the presence of equivalent amounts of free scVEGF. In addition, 293/KDR cell growth stimulation was observed in the same concentration range with either immobilized or free scVEGF. The effects of immobilized scVEGF, and soluble scVEGF were blocked by NVP-AAD777-NX, a VEGF receptor tyrosine kinase inhibitor. These data indicate that site-specific immobilization via Cys-tag provides a facile and reliable method for permanent deposition of functionally active growth factors on synthetic or protein scaffolds with applications for advanced tissue engineering.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Cisteína/química , Rim/citologia , Rim/metabolismo , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/química , Sítios de Ligação , Adesão Celular , Linhagem Celular , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Humanos , Ligação Proteica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Mol Cancer Ther ; 4(9): 1423-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16170035

RESUMO

Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)-containing bioconjugate that potentially could be used to target up-regulated VEGF receptors (VEGFR), which are overexpressed on tumor neovasculature. A fifth-generation polyamidoamine dendrimer containing 128 reactive amino groups was reacted with 105 to 110 decaborate molecules to produce a macromolecule with 1,050 to 1,100 boron atoms per dendrimer. This was conjugated to thiol groups of VEGF at a 4:1 molar ratio using the heterobifunctional reagent sulfo-LC-SPDP. In addition, the boronated dendrimer was tagged with a near-IR Cy5 dye to allow for near-IR fluorescent imaging of the bioconjugate in vitro and in vivo. As would be predicted, the resulting VEGF-BD/Cy5 bioconjugate was not cytotoxic to HEK293 cells engineered to express 2.5 x 10(6) VEGFR-2 per cell. Furthermore, it showed binding and activation of VEGFR-2 comparable with that of native VEGF. Internalization of VEGF-BD/Cy5 by PAE cells expressing 2.5 x 10(5) VEGFR-2 per cell was inhibited by excess VEGF, indicating a VEGFR-2-mediated mechanism of uptake. Near-IR fluorescent imaging of 4T1 mouse breast carcinoma revealed selective accumulation of VEGF-BD/Cy5, but not BD/Cy5, particularly at the tumor periphery where angiogenesis was most active. Accumulation of VEGF-BD/Cy5 in 4T1 breast carcinoma was diminished in mice pretreated with a toxin-VEGF fusion protein that selectively killed VEGFR-2-overexpressing endothelial cells. Our data lay the groundwork for future studies using the VEGF-BD/Cy5 bioconjugate as a targeting agent for BNCT of tumor neovasculature.


Assuntos
Compostos de Boro/farmacocinética , Endotélio Vascular/efeitos dos fármacos , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Poliaminas/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Poliaminas/química , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
19.
J Nucl Med ; 57(11): 1811-1816, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27390161

RESUMO

Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. METHODS: Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. RESULTS: All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR-mediated tumor uptake of scVR1/Zr and scVR2/Zr was mediated exclusively by the corresponding receptor, VEGFR-1 or VEGFR-2, respectively. In contrast, uptake of pan-receptor scV/Zr was mediated by both VEGFR-1 and VEGFR-2 at an approximately 2:1 ratio. CONCLUSION: First-in-class selective PET tracers for imaging VEGFR-1 and VEGFR-2 were constructed and successfully validated in an orthotopic murine tumor model.


Assuntos
Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Zircônio/farmacocinética , Animais , Linhagem Celular Tumoral , Marcação por Isótopo , Isótopos/química , Isótopos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Engenharia de Proteínas/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fator A de Crescimento do Endotélio Vascular/genética , Zircônio/química
20.
EJNMMI Res ; 6(1): 4, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26780081

RESUMO

BACKGROUND: scVEGF/(177)Lu is a novel radiopharmaceutical targeted by recombinant single-chain (sc) derivative of vascular endothelial growth factor (VEGF) that binds to and is internalized by vascular endothelial growth factor receptors (VEGFR). scVEGF/(177)Lu potential as adjuvant and neoadjuvant anti-angiogenic therapy was assessed in metastatic and orthotopic mouse models of triple-negative breast cancer. METHODS: Metastatic lesions in Balb/c mice were established by intracardiac injection of luciferase-expressing 4T1luc mouse breast carcinoma cells. Mice with metastatic lesions received single intravenous (i.v.) injection of well-tolerated dose of scVEGF/(177)Lu (7.4 MBq/mouse) at day 8 after 4T1luc cell injection. Primary orthotopic breast tumors in immunodeficient mice were established by injecting luciferase-expressing MDA231luc human breast carcinoma cells into mammary fat pad. Tumor-bearing mice were treated with single injections of scVEGF/(177)Lu (7.4 MBq/mouse, i.v), or liposomal doxorubicin (Doxil, 1 mg doxorubicin per kg, i.v.), or with a combination of Doxil and scVEGF/(177)Lu given at the same doses, but two hours apart. "Cold" scVEGF-targeting conjugate was included in controls and in Doxil alone group. The effects of treatments were defined by bioluminescent imaging (BLI), computed tomography (CT), computed microtomography (microCT), measurements of primary tumor growth, and immunohistochemical analysis. RESULTS: In metastatic model, adjuvant treatment with scVEGF/(177)Lu decreased overall metastatic burden and improved survival. In orthotopic primary tumor model, a combination of Doxil and scVEGF/(177)Lu was more efficient in tumor growth inhibition than each treatment alone. scVEGF/(177)Lu treatment decreased immunostaining for VEGFR-1, VEGFR-2, and pro-tumorigenic M2-type macrophage marker CD206. CONCLUSIONS: Selective targeting of VEGFR with well-tolerated doses of scVEGF/(177)Lu is effective in metastatic and primary breast cancer models and can be combined with chemotherapy. As high level of VEGFR expression is a common feature in a variety of cancers, targeted delivery of (177)Lu for specific receptor-mediated uptake warrants further exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA