Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801310

RESUMO

BACKGROUND: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. RESULTS: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT's exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3' UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. CONCLUSIONS: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.


Assuntos
Biomarcadores Tumorais/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Genômica , Glioma/genética , Glioma/patologia , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA não Traduzido/genética , Proteínas Supressoras de Tumor/genética
2.
Hum Mutat ; 41(5): 1051-1068, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950578

RESUMO

Detection of low-abundance mutations in cell-free DNA is being used to identify early cancer and early cancer recurrence. Here, we report a new PCR-LDR-qPCR assay capable of detecting point mutations at a single-molecule resolution in the presence of an excess of wild-type DNA. Major features of the assay include selective amplification and detection of mutant DNA employing multiple nested primer-binding regions as well as wild-type sequence blocking oligonucleotides, prevention of carryover contamination, spatial sample dilution, and detection of multiple mutations in the same position. Our method was tested to interrogate the following common cancer somatic mutations: BRAF:c.1799T>A (p.Val600Glu), TP53:c.743G>A (p.Arg248Gln), KRAS:c.35G>C (p.Gly12Ala), KRAS:c.35G>T (p.Gly12Val), KRAS:c.35G>A (p.Gly12Asp), KRAS:c.34G>T (p.Gly12Cys), and KRAS:c.34G>A (p.Gly12Ser). The single-well version of the assay detected 2-5 copies of these mutations, when diluted with 10,000 genome equivalents (GE) of wild-type human genomic DNA (hgDNA) from buffy coat. A 12-well (pixel) version of the assay was capable of single-molecule detection of the aforementioned mutations at TP53, BRAF, and KRAS (specifically p.Gly12Val and p.Gly12Cys), mixed with 1,000-2,250 GE of wild-type hgDNA from plasma or buffy coat. The assay described herein is highly sensitive, specific, and robust, and potentially useful in liquid biopsies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Mutação Puntual , Reação em Cadeia da Polimerase em Tempo Real , Imagem Individual de Molécula/métodos , Alelos , Substituição de Aminoácidos , Linhagem Celular Tumoral , DNA Tumoral Circulante , Análise Mutacional de DNA/métodos , Genótipo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
BMC Cancer ; 20(1): 85, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005108

RESUMO

BACKGROUND: Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. METHODS: In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. RESULTS: Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). CONCLUSION: This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , Ácidos Nucleicos Livres/sangue , Metilação de DNA , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ilhas de CpG , Feminino , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase Multiplex , Proteína Quinase C beta/genética , Receptores Citoplasmáticos e Nucleares/genética
4.
J Cell Physiol ; 229(12): 1952-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24729470

RESUMO

As a strategy to identify gene expression changes affected by human polynucleotide phosphorylase (hPNPase(old-35)), we performed gene expression analysis of HeLa cells in which hPNPase(old-35) was overexpressed. The observed changes were then compared to those of HO-1 melanoma cells in which hPNPase(old-35) was stably knocked down. Through this analysis, 90 transcripts, which positively or negatively correlated with hPNPase(old-35) expression, were identified. The majority of these genes were associated with cell communication, cell cycle, and chromosomal organization gene ontology categories. For a number of these genes, the positive or negative correlations with hPNPase(old-35) expression were consistent with transcriptional data extracted from the TCGA (The Cancer Genome Atlas) expression datasets for colon adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), ovarian serous cyst adenocarcinoma (OV), and prostate adenocarcinoma (PRAD). Further analysis comparing the gene expression changes between Ad.hPNPase(old-35) infected HO-1 melanoma cells and HeLa cells overexpressing hPNPase(old-35) under the control of a doxycycline-inducible promoter, revealed global changes in genes involved in cell cycle and mitosis. Overall, this study provides further evidence that hPNPase(old-35) is associated with global changes in cell cycle-associated genes and identifies potential gene targets for future investigation.


Assuntos
Ciclo Celular/genética , Exorribonucleases/biossíntese , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Apoptose/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HeLa , Humanos , Melanoma/patologia , Regiões Promotoras Genéticas , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
5.
Mol Phylogenet Evol ; 73: 77-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24503483

RESUMO

Polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'→5' phosphate-dependent exoribonucease belonging to the PDX family of proteins. It consists of two catalytic RNase PH domains (PNP1 and PNP2), an α-helical domain and two RNA-binding domains. The PNP1 and PNP2 domains share substantial sequence and structural homology with RNase PH (RPH), which is another PDX family member found in all the three major kingdoms of life, suggesting that these three domains originated from a common ancestor. Phylogenetic analysis (based on the PNPase/RNase PH sequence information for 43 vertebrate taxa) shows that PNP2 and RPH are sister taxa which arose through duplication of the ancestral PNP1 domain. Also, all three domains (PNP1, PNP2 and RPH), along with the KH and S1 domains have undergone significant and directional sequence change, as determined by branch and site-specific dN/dS analyses. In general, codons that show dN/dS ratios that are significantly greater than 1.0 are outside the ordered regions (α-helices and ß-sheets) of these protein domains. In addition, sites that have been selected for mutagenesis in these proteins lie embedded in regions where there is a preponderance of codons with dN/dS values that are not significantly different from 0.0. Overall, this report is an attempt to further our understanding of the evolutionary history of these three protein domains, and define the evolutionary events that led to their refinement in the vertebrate lineage leading to mammals.


Assuntos
Evolução Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Animais , Domínio Catalítico/genética , Códon/genética , Sequência Conservada/genética , Filogenia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estrutura Secundária de Proteína , Seleção Genética , Análise de Sequência de DNA
6.
J Med Chem ; 67(7): 5473-5501, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38554135

RESUMO

Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteólise , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
7.
Adv Cancer Res ; 158: 233-292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990534

RESUMO

The microtubule-targeting paclitaxel (PTX) and docetaxel (DTX) are widely used chemotherapeutic agents. However, the dysregulation of apoptotic processes, microtubule-binding proteins, and multi-drug resistance efflux and influx proteins can alter the efficacy of taxane drugs. In this review, we have created multi-CpG linear regression models to predict the activities of PTX and DTX drugs through the integration of publicly available pharmacological and genome-wide molecular profiling datasets generated using hundreds of cancer cell lines of diverse tissue of origin. Our findings indicate that linear regression models based on CpG methylation levels can predict PTX and DTX activities (log-fold change in viability relative to DMSO) with high precision. For example, a 287-CpG model predicts PTX activity at R2 of 0.985 among 399 cell lines. Just as precise (R2=0.996) is a 342-CpG model for predicting DTX activity in 390 cell lines. However, our predictive models, which employ a combination of mRNA expression and mutation as input variables, are less accurate compared to the CpG-based models. While a 290 mRNA/mutation model was able to predict PTX activity with R2 of 0.830 (for 546 cell lines), a 236 mRNA/mutation model could calculate DTX activity at R2 of 0.751 (for 531 cell lines). The CpG-based models restricted to lung cancer cell lines were also highly predictive (R2≥0.980) for PTX (74 CpGs, 88 cell lines) and DTX (58 CpGs, 83 cell lines). The underlying molecular biology behind taxane activity/resistance is evident in these models. Indeed, many of the genes represented in PTX or DTX CpG-based models have functionalities related to apoptosis (e.g., ACIN1, TP73, TNFRSF10B, DNASE1, DFFB, CREB1, BNIP3), and mitosis/microtubules (e.g., MAD1L1, ANAPC2, EML4, PARP3, CCT6A, JAKMIP1). Also represented are genes involved in epigenetic regulation (HDAC4, DNMT3B, and histone demethylases KDM4B, KDM4C, KDM2B, and KDM7A), and those that have never been previously linked to taxane activity (DIP2C, PTPRN2, TTC23, SHANK2). In summary, it is possible to accurately predict taxane activity in cell lines based entirely on methylation at multiple CpG sites.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/metabolismo , Docetaxel/farmacologia , Epigênese Genética , Modelos Lineares , Taxoides/farmacologia , Taxoides/uso terapêutico , Taxoides/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular , RNA Mensageiro , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Nucleares/metabolismo , Chaperonina com TCP-1/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(17): 7131-6, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19359472

RESUMO

During disease progression the cells that comprise solid malignancies undergo significant changes in gene copy number and chromosome structure. Colorectal cancer provides an excellent model to study this process. To indentify and characterize chromosomal abnormalities in colorectal cancer, we performed a statistical analysis of 299 expression and 130 SNP arrays profiled at different stages of the disease, including normal tissue, adenoma, stages 1-4 adenocarcinoma, and metastasis. We identified broad (> 1/2 chromosomal arm) and focal (< 1/2 chromosomal arm) events. Broad amplifications were noted on chromosomes 7, 8q, 13q, 20, and X and broad deletions on chromosomes 4, 8p, 14q, 15q, 17p, 18, 20p, and 22q. Focal events (gains or losses) were identified in regions containing known cancer pathway genes, such as VEGFA, MYC, MET, FGF6, FGF23, LYN, MMP9, MYBL2, AURKA, UBE2C, and PTEN. Other focal events encompassed potential new candidate tumor suppressors (losses) and oncogenes (gains), including CCDC68, CSMD1, POLR1D, and PMEPA1. From the expression data, we identified genes whose expression levels reflected their copy number changes and used this relationship to impute copy number changes to samples without accompanying SNP data. This analysis provided the statistical power to show that deletions of 8p, 4p, and 15q are associated with survival and disease progression, and that samples with simultaneous deletions in 18q, 8p, 4p, and 15q have a particularly poor prognosis. Annotation analysis reveals that the oxidative phosphorylation pathway shows a strong tendency for decreased expression in the samples characterized by poor prognosis.


Assuntos
Instabilidade Cromossômica/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genoma Humano/genética , Deleção Cromossômica , Progressão da Doença , Fator de Crescimento de Fibroblastos 23 , Dosagem de Genes/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , RNA não Traduzido/genética , Taxa de Sobrevida
9.
Ann Surg Oncol ; 18(13): 3694-700, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21347779

RESUMO

If properly translated to clinical use, our knowledge about biomarkers may lead to a more effective way of combating colorectal cancer (CRC). Biomarkers are biomolecular, genetic, or cytogenetic attributes indicative of the disease's progression, predisposition, prognosis, or therapeutic options. For CRC, these include chromosomal instability, mutations in KRAS and TP53, loss of 18q, and elevated level of carcinoembryonic antigen (CEA), which are all associated with poor prognosis. The prognostic significance of 18q loss can be attributed to reduced expression of SMAD4, or DCC, although the chromosomal arm is actually heavily populated by genes whose downregulation correlate to worse survival. Potentially, identification of prognostic biomarkers can help the oncologist decide whether adjuvant chemotherapy is necessary after surgery. Testing for therapeutic biomarkers can be necessary if targeted therapeutics are being considered. The identification of highly penetrant predisposition markers (such as mutations in APC and MLH1) can be a lifesaver for carrier individuals, who would then have to undergo colonoscopy at an earlier age. Even sporadic CRCs may have some hereditary components, according to recent studies. Genome-wide association studies (using SNP arrays) showed that polymorphisms of certain genes can have subtle influence on CRC predisposition. Our own SNP array-based analysis suggested that long stretches of germline homozygosity (autozygosity), indicative of consanguinity, may also factor in CRC predisposition.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Progressão da Doença , Estudo de Associação Genômica Ampla , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico
10.
Curr Cancer Drug Targets ; 21(4): 360-374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33535955

RESUMO

BACKGROUND: MGMT (O6-methylguanine-DNA methyltransferase) is primarily responsible for limiting the activity of some widely used chemotherapeutic agents, including temozolomide (TMZ) and carmustine (BCNU). The gene encoding this protein is epigenetically regulated, and assessment of methylation at its promoter region is used to predict glioma patients' response to TMZ. METHODS: In this report, we employed a bioinformatic approach to elucidate MGMT's epigenetic regulation. Integrated for the analysis were genome-wide methylation and transcription datasets for > 8,600 human tissue (representing 31 distinct cancer types) and 500 human cancer cell line samples. Also crucial to the interpretation of results were publicly available data from the ENCODE Project: tracks for histone modifications (via ChIP-seq) and DNase I hypersensitivity (via DNaseseq), as well as methylation and transcription data for representative cell lines (HeLa-S3, HMEC, K562). RESULTS AND DISCUSSION: We were able to validate (perhaps more comprehensively) the contrasting influences of CpG methylation at promoter region and at gene body on MGMT transcription. While the MGMT promoter is populated by CpG sites whose methylation levels displayed high negative correlation (R) with MGMT mRNA counts, the gene body harbors CpG sites exhibiting high positive R values. The promoter CpG sites with very high negative R's across cancer types include cg12981137, cg12434587, and cg00618725. Among the notable gene body CpG sites (high positive R's across cancer types) are cg00198994 (Intron 1), cg04473030 (Intron 2), and cg07367735 (Intron 4). For certain cancer types, such as melanoma, gene body methylation appears to be a better predictor of MGMT transcription (compared to promoter methylation). In general, the CpG methylation v. MGMT expression R values are higher in cell lines relative to tissues. Also, these correlations are noticeably more prominent in certain cancer types such as colorectal, adrenocortical, esophageal, skin, and head and neck cancers, as well as glioblastoma. As expected, hypomethylation at the promoter region is associated with more open chromatin, and enrichment of histone marks H3K4m1, H3K4m2, H3K4m3, and H3K9ac. CONCLUSION: Overall, our analysis illustrated the contrasting influence of promoter and gene body methylation on MGMT expression. These observations may help improve diagnostic assays for MGMT.


Assuntos
Carmustina/farmacologia , Metilação de DNA/fisiologia , Neoplasias , O(6)-Metilguanina-DNA Metiltransferase/genética , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ilhas de CpG/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Humanos , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas
11.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680307

RESUMO

Our understanding of metastatic prostate cancer (mPrCa) has dramatically advanced during the genomics era. Nonetheless, many aspects of the disease may still be uncovered through reanalysis of public datasets. We integrated the expression datasets for 209 PrCa tissues (metastasis, primary, normal) with expression, gene dependency (GD) (from CRISPR/cas9 screen), and drug viability data for hundreds of cancer lines (including PrCa). Comparative statistical and pathways analyses and functional annotations (available inhibitors, protein localization) revealed relevant pathways and potential (and previously reported) protein markers for minimally invasive mPrCa diagnostics. The transition from localized to mPrCa involved the upregulation of DNA replication, mitosis, and PLK1-mediated events. Genes highly upregulated in mPrCa and with very high average GD (~1) are potential therapeutic targets. We showed that fostamatinib (which can target PLK1 and other over-expressed serine/threonine kinases such as AURKA, MELK, NEK2, and TTK) is more active against cancer lines with more pronounced signatures of invasion (e.g., extracellular matrix organization/degradation). Furthermore, we identified surface-bound (e.g., ADAM15, CD276, ABCC5, CD36, NRP1, SCARB1) and likely secreted proteins (e.g., APLN, ANGPT2, CTHRC1, ADAM12) that are potential mPrCa diagnostic markers. Overall, we demonstrated that comprehensive analyses of public genomics data could reveal potentially clinically relevant information regarding mPrCa.

12.
J Mol Diagn ; 22(7): 885-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407802

RESUMO

The analysis of CpG methylation in circulating tumor DNA fragments has emerged as a promising approach for the noninvasive early detection of solid tumors, including colorectal cancer (CRC). The most commonly employed assay involves bisulfite conversion of circulating tumor DNA, followed by targeted PCR, then real-time quantitative PCR (alias methylation-specific PCR). This report demonstrates the ability of a multiplex bisulfite PCR-ligase detection reaction-real-time quantitative PCR assay to detect seven methylated CpG markers (CRC or colon specific), in both simulated (approximately 30 copies of fragmented CRC cell line DNA mixed with approximately 3000 copies of fragmented peripheral blood DNA) and CRC patient-derived cell-free DNAs. This scalable assay is designed for multiplexing and incorporates steps for improved sensitivity and specificity, including the enrichment of methylated CpG fragments, ligase detection reaction, the incorporation of ribose bases in primers, and use of uracil DNA glycosylase. Six of the seven CpG markers (located in promoter regions of PPP1R16B, KCNA3, CLIP4, GDF6, SEPT9, and GSG1L) were identified through integrated analyses of genome-wide methylation data sets for 31 different types of cancer. These markers were mapped to CpG sites at the promoter region of VIM; VIM and SEPT9 are established epigenetic markers of CRC. Additional bioinformatics analyses show that the methylation at these CpG sites negatively correlates with the transcription of their corresponding genes.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Metilação de DNA/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequência de Bases/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Biologia Computacional/métodos , Ilhas de CpG/genética , Células HT29 , Humanos , Ligases/genética , Regiões Promotoras Genéticas/genética , Septinas/sangue , Septinas/genética , Vimentina/sangue , Vimentina/genética
13.
Clin Cancer Res ; 14(19): 6005-13, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829479

RESUMO

PURPOSE: Aberrant promoter methylation and genomic instability occur frequently during colorectal cancer development. CpG island methylator phenotype (CIMP) has been shown to associate with microsatellite instability, and BRAF mutation and is often found in the right-side colon. Nevertheless, the relative importance of CIMP and chromosomal instability (CIN) for tumorigenesis has yet to be thoroughly investigated in sporadic colorectal cancers. EXPERIMENTAL DESIGN: We determined CIMP in 161 primary colorectal cancers and 66 matched normal mucosae using a quantitative bisulfite/PCR/ligase detection reaction (LDR)/Universal Array assay. The validity of CIMP was confirmed in a subset of 60 primary tumors using MethyLight assay and five independent markers. In parallel, CIN was analyzed in the same study cohort using Affymetrix 50K Human Mapping arrays. RESULTS: The identified CIMP-positive cancers correlate with microsatellite instability (P = 0.075) and the BRAF mutation V600E (P = 0.00005). The array-based high-resolution analysis of chromosomal aberrations indicated that the degree of aneuploidy is spread over a wide spectrum among analyzed colorectal cancers. Whether CIN was defined by copy number variations in selected microsatellite loci (criterion 1) or considered as a continuous variable (criterion 2), CIMP-positive samples showed a strong correlation with low-degree chromosomal aberrations (P = 0.075 and P = 0.012, respectively). Similar correlations were observed when CIMP was determined by MethyLight assay (P = 0.001 and P = 0.013, respectively). CONCLUSION: CIMP-positive tumors generally possess lower chromosomal aberrations, which may only be revealed using a genome-wide approach. The significant difference in the degree of chromosomal aberrations between CIMP-positive and the remainder of samples suggests that epigenetic (CIMP) and genetic (CIN) abnormalities may arise from independent molecular mechanisms of tumor progression.


Assuntos
Aberrações Cromossômicas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Mutação , Instabilidade Cromossômica , Epigênese Genética , Feminino , Genoma Humano , Humanos , Masculino , Repetições de Microssatélites , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética
14.
Adv Cancer Res ; 143: 351-384, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31202362

RESUMO

Recent reports describe how genome-wide transcriptional analysis of cancer tissues can be exploited to identify molecular signatures of immune infiltration in cancer. We hypothesize that immune infiltration in cancer may also be defined by changes in certain epigenetic signatures. In this context, a primary objective is to identify site-specific CpG markers whose levels of methylation may be highly indicative of known transcriptional markers of immune infiltration such as GZMA, PRF1, T cell receptor genes, PDCD1, and CTLA4. This has been accomplished by integrating genome-wide transcriptional expression and methylation data for different types of cancer (melanoma, kidney cancers, lung cancers, gliomas, head and neck cancer). Our findings establish that cancers of related histology also have a high degree of similarity in immune-infiltration CpG markers. For example, the epigenetic immune infiltration signatures in lung adenocarcinoma (LUAD), mesothelioma (MESO), lung squamous cell carcinoma (LUSC), and head and neck squamous cell carcinoma (HNSC) are distinctly similar. So are glioblastoma multiforme (GBM) and brain lower grade glioma (LGG); and kidney renal papillary cell carcinoma (KIRP) and kidney renal clear cell carcinoma (KIRC). Kidney chromophobe (KICH), on the other hand has markers that are unique to this cohort. The strong relationships between immune infiltration and CpG methylation (for certain sites) in cancer tissues were not observed upon integrated analysis of publicly available cancer cell line datasets. Results from comparative pathways analyses offer further justification to methylation at certain CpG sites as being indicators of cancer immune infiltration, and possibly of predicting patient response to immunotherapeutic drugs. Achieving this target objective would significantly enhance therapeutic outcomes employing immunotherapy through focused patient-centric personalized medicine.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/tratamento farmacológico , Animais , Ilhas de CpG , Epigenômica , Humanos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/imunologia
15.
Adv Cancer Res ; 142: 107-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30885360

RESUMO

Recent clinical studies document the power of immunotherapy in treating subsets of patients with advanced cancers. In this context and with multiple cancer immunotherapeutics already evaluated in the clinic and a large number in various stages of clinical trials, it is imperative to comprehensively examine genomics data to better comprehend the role of immunity in different cancers in predicting response to therapy and in directing appropriate therapies. The approach we chose is to scrutinize the pathways and epigenetic factors predicted to drive immune infiltration in different cancer types using publicly available TCGA transcriptional and methylation datasets, along with accompanying clinico-pathological data. We observed that the relative activation of T cells and other immune signaling pathways differs across cancer types. For example, pathways related to activation and proliferation of helper and cytotoxic T cells appear to be more highly enriched in kidney, skin, head and neck, and esophageal cancers compared to those of lung, colorectal, and liver or bile duct cancers. The activation of these immune-related pathways positively associated with prognosis in certain cancer types, most notably melanoma, head and neck, and cervical cancers. Integrated methylation and expression data (along with publicly available, ENCODE-generated histone ChIP Seq and DNAse hypersensitivity data) predict that epigenetic regulation is a primary factor driving transcriptional activation of a number of genes crucial to immunity in cancer, including T cell receptor genes (e.g., CD3D, CD3E), CTLA4, and GZMA. However, the extent to which epigenetic factors (primarily methylation at promoter regions) affect transcription of immune-related genes may vary across cancer types. For example, there is a high negative correlation between promoter CpG methylation and CD3D expression in renal and thyroid cancers, but not in brain tumors. The types of analyses we have undertaken provide insights into the relationships between immune modulation and cancer etiology and progression, offering clues into ways of therapeutically manipulating the immune system to promote immune recognition and immunotherapy.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/genética , Neoplasias/imunologia , Metilação de DNA , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Prognóstico
16.
Oncogene ; 38(41): 6781-6793, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406249

RESUMO

Despite multi-modality treatments, prognosis for advanced stage neuroblastoma (NB) remains challenging with residual long-term disabilities in survivors. Advanced stage NB is metastatic, which is a principal cause of cancer-related deaths. We presently document a primary role of MDA-9 in NB progression and define the molecular mechanisms by which MDA-9 promotes transformed phenotypes. NB cell lines and clinical samples display elevated MDA-9 expression and bioinformatic analysis supports an association between elevated MDA-9 and bone metastasis and poor prognosis. Genetic (shmda-9, mda-9 siRNA) or pharmacological (small molecule inhibitor of protein-protein interactions; PDZ1i) blockade of MDA-9 decreases NB migration, invasion, and metastasis. Blocking mda-9 expression or disrupting MDA-9 partner protein interactions downregulates integrin α6 and ß4, diminishing Src activity and suppressing Rho-Rac-Cdc42 activity. These signaling changes inhibit cofilin and matrix metalloproteinases reducing in vitro and in vivo NB cell migration. Overexpression of integrin α6 and ß4 rescues the invasion phenotype and increases Src activity, supporting integrins as essential regulators of MDA-9-mediated NB migration and invasion. We identify MDA-9 as a key contributor to NB pathogenesis and show that genetic or pharmacological inhibition suppresses NB pathogenesis by an integrin-mediated Src-disruption pathway.


Assuntos
Invasividade Neoplásica , Metástase Neoplásica , Neuroblastoma/patologia , Sinteninas/metabolismo , Linhagem Celular Tumoral , Humanos , Integrinas/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo
17.
Clin Cancer Res ; 12(20 Pt 1): 5951-9, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17062666

RESUMO

PURPOSE: The growth-related oncogene alpha (GROalpha) is a secreted interleukin-like molecule that interacts with the CXCR2 G-protein-coupled receptor. We found that the mRNA and protein products of GROalpha are more highly expressed in neoplastic than normal colon epithelium, and we studied potential mechanisms by which GROalpha may contribute to tumor initiation or growth. EXPERIMENTAL DESIGN: Cell lines that constitutively overexpress GROalpha were tested for growth rate, focus formation, and tumor formation in a xenograft model. GROalpha expression was determined by Affymetrix GeneChip (241 microdissected colon samples), real-time PCR (n = 32), and immunohistochemistry. Primary colon cancer samples were also employed to determine copy number changes and loss of heterozygosity related to the GROalpha and fibulin-1 genes. RESULTS: In cell cultures, GROalpha transfection transformed NIH 3T3 cells, whereas inhibition of GROalpha by inhibitory RNA was associated with apoptosis, decreased growth rate, and marked up-regulation of the matrix protein fibulin-1. Forced expression of GROalpha was associated with decreased expression of fibulin-1. Expression of GROalpha mRNA was higher in primary adenocarcinomas (n = 132), adenomas (n = 32), and metastases (n = 52) than in normal colon epithelium (P < 0.001). These results were confirmed by real-time PCR and by immunohistochemistry. Samples of primary and metastatic colon cancer showed underexpression of fibulin-1 when compared with normal samples. There were no consistent changes in gene copy number of GROalpha or fibulin-1, implying a transcriptional basis for these findings. CONCLUSION: Elevated expression of GROalpha is frequent in adenocarcinoma of the colon and is associated with down-regulation of the matrix protein fibulin-1 in experimental models and in clinical samples. GROalpha overexpression abrogates contact inhibition in cell culture models, whereas inhibition of GROalpha expression is associated with apoptosis. Importantly, coexpression of fibulin-1 with GROalpha abrogates key aspects of the transformed phenotype, including tumor formation in a murine xenograft model. Targeting GRO proteins may provide new opportunities for treatment of colon cancer.


Assuntos
Adenocarcinoma/genética , Proteínas de Ligação ao Cálcio/genética , Quimiocinas CXC/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células 3T3 , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Quimiocina CXCL1 , Neoplasias do Colo/patologia , DNA de Neoplasias/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Neoplásico/genética , Transplante Heterólogo
19.
Mol Cancer Ther ; 1(9): 727-36, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12479369

RESUMO

Medulloblastoma (D-341 MED) and rhabdomyosarcoma (TE-671) cell lines, which are resistant to either 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or the combination of BCNU and O6-benzylguanine (O6-BG), were generated by serial escalation of BCNU. The activities of O6-alkylguanine-DNA alkyltransferase (AGT), glutathione-S-transferase (GST), and total glutathione (GSH) of the parental, BCNU-resistant (BR), and BCNU + O6-BG-resistant (OBR) cells were measured. No significant differences in GST activity or total GSH were seen between the parental, BR, and OBR cells of both TE-671 and D-341 MED. The AGT activities of D-341 MED (BR) and TE-671 (BR) were twice those of D-341 MED and TE-671, respectively, confirming the importance of this enzyme for BCNU resistance. The D-341 MED (OBR) cells did not exhibit any AGT activity, suggesting that another mechanism must play a role in the drug resistance. Fewer DNA interstrand cross-links (ICLs) were observed in D-341 MED (OBR) than in D-341 MED after 8 h BCNU (100-400 microM) treatment. However, the amounts of DNA ICLs observed in D-341 MED and D-341 MED (OBR) were stable after 24 h. Microarray analysis showed the increased expressions of several metallothionein genes and down-regulation of several proapoptotic genes. The AGT activity of TE-671 (OBR) was 223 fmol/mg when the cells were grown in 10 microM O6-BG and decreased to about half this value when the O6-BG concentration was increased 60 microM. The AGT cDNA of TE-671 (OBR) cells was cloned and found to contain a G-to-T transversion at codon 156, resulting in conversion of glycine to cysteine (G156C). In vitro mutagenesis has shown that the G156C AGT mutant is resistant to inactivation by O6-BG. Thus, the selection of a mutant AGT with decreased sensitivity to O6-BG is a significant contributing factor to BCNU + O6-BG resistance.


Assuntos
Carmustina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Meduloblastoma/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico , Sequência de Aminoácidos , Apoptose , Clonagem Molecular , Relação Dose-Resposta a Droga , Regulação para Baixo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Dados de Sequência Molecular , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Mutação Puntual , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Regulação para Cima
20.
Mol Cancer Ther ; 3(9): 1127-35, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15367707

RESUMO

The chemotherapeutic activity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU or carmustine) may be improved by the addition of O6-benzylguanine (O6-BG). The reaction of O6-BG with O6-alkylguanine-DNA alkyltransferase (AGT) prevents the repair of O6-chloroethyl lesions caused by BCNU. In clinics, the combination of O6-BG and BCNU is now being tested for the treatment of brain tumors. However, the effectiveness of this drug regimen may be limited by drug resistance acquired during treatment. To understand the possible mechanisms of resistance of brain tumor cells to the O6-BG/BCNU combination, we generated medulloblastoma cell lines (D283 MED, D341 MED, and Daoy) resistant to the combination of O6-BG and BCNU [O6-BG/BCNU resistant (OBR)]. DNA sequencing showed that all of the parent cell lines express wild-type AGTs, whereas every OBR cell line exhibited mutations that potentially affected the binding of O6-BG to the protein as evidenced previously by in vitro mutagenesis and structural studies of AGT. The D283 MED (OBR), Daoy (OBR), and D341 MED (OBR) cell lines expressed G156C, Y114F, and K165T AGT mutations, respectively. We reported previously that rhabdomyosarcoma TE-671 (OBR) also expresses a G156C mutation. These data suggest that the clonal selection of AGT mutants during treatment with O6-BG plus an alkylator may produce resistance to this intervention in clinical settings.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Carmustina/uso terapêutico , Desoxiguanosina/análogos & derivados , Guanina/análogos & derivados , Guanina/uso terapêutico , Mutação , O(6)-Metilguanina-DNA Metiltransferase/genética , Linhagem Celular Tumoral , Desoxiguanosina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA