Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 286(27): 24324-35, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21724853

RESUMO

γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.


Assuntos
Neurônios/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Bungarotoxinas/farmacologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Receptores de GABA-B/genética , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
2.
Sci Rep ; 12(1): 3114, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210470

RESUMO

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Assuntos
SARS-CoV-2
4.
J Biomol Screen ; 7(6): 554-69, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14599354

RESUMO

The thrust of early drug discovery in recent years has been toward the configuration of homogeneous miniaturized assays. This has allowed organizations to contain costs in the face of exponential increases in the number of screening assays that need to be run to remain competitive. Miniaturization brings with it an increasing dependence on instrumentation, which over the past several years has seen the development of nanodispensing capability and sophisticated detection strategies. To maintain confidence in the data generated from miniaturized assays, it is critical to ensure that both compounds and reagents have been delivered as expected to the target wells. The authors have developed a standard operating procedure for liquid-handling quality control that has enabled them to evaluate performance on 2 levels. The first level provides for routine daily testing on existing instrumentation, and the second allows for more rigorous testing of new dispensing technologies. The procedure has shown itself to be useful in identifying both method programming and instrumentation performance shortcomings and has provided a means to harmonizing instrumentation usage by assay development and screening groups. The goal is that this type of procedure be used for facilitating the exchange of liquid handler performance data across the industry.


Assuntos
Microquímica/instrumentação , Microquímica/normas , Técnicas de Química Combinatória/instrumentação , Técnicas de Química Combinatória/normas , Interpretação Estatística de Dados , Agulhas , Controle de Qualidade , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA