Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Saudi Pharm J ; 31(6): 889-903, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37228319

RESUMO

The present study aimed to evaluate the impact of ultrafine nanoemulsions on the transdermal delivery of lornoxicam (LOR) for management of the inflammation. The transdermal administration of LORNE could increase the efficacy of LOR with a reduction in side effects. Merging the beneficial properties of ultrafine nanoemulsions and their components (penetration enhancers) can lead to good solubilization, a small droplet size, and more effective LOR carriers. Therefore, this study aims to develop and evaluate the potential use of ultrafine nanoemulsions of LOR (LORNE) to elucidate their skin targeting for the treatment of inflammation. Based on solubility and pseudo ternary phase diagram tests, ultrafine LORNE composed of Labrafil M 2125 CS, Cremophor RH40, and Transcutol HP to deliver LOR was developed and characterized for its physicochemical properties, emulsification, and in vitro release. The selected LORNE was incorporated into carbopol gel (LORNE-Gel) and examined for ex vivo skin permeation, retention, dermatokinetics, anti-inflammatory efficacy, and skin irritation. The selected LORNE12-Gel could improve skin permeation, retention, and dermatokinetic results significantly (p < 0.05) with enhanced CSkin max and AUC0-48h compared to LOR-Gel. Moreover, LORNE12-Gel showed a remarkable anti-inflammatory effect compared to LOR-Gel after topical application. No signs of skin irritation were observed following treatment, indicating the safety of LORNE12-Gel. Thus, this study demonstrated that LOR-loaded LORNE12-Gel could be promising as an efficient transdermal nanocarrier for an anti-inflammatory alternative.

2.
Molecules ; 24(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641899

RESUMO

Flexible liposomes (FLs) were developed as promising nano-carriers for anticancer drugs. Coating them with chitosan (CS) could improve their drug delivery properties. The aim of this study was to investigate the physicochemical characteristics, pharmacokinetics behavior, and cytotoxic efficacy of docetaxel (DTX)-loaded CS-coated FLs (C-FLs). DTX-loaded FLs and C-FLs were produced via thin-film evaporation and electrostatic deposition methods, respectively. To explore their physicochemical characterization, the particle size, zeta potential, encapsulation efficiency (EE%), morphology, and DTX release profiles were determined. In addition, pharmacokinetic studies were performed, and cytotoxic effect was assessed using colon cancer cells (HT29). Various FLs, dependent on the type of surfactant, were formed with particle sizes in the nano-range, 137.6 ± 6.3 to 238.2 ± 14.2 nm, and an EE% of 59⁻94%. Moreover, the zeta potential shifted from a negative to a positive value for C-FL with increased particle size and EE%, and the in vitro sustained-release profiles of C-FL compared to those of FL were evident. The optimized C-FL containing sodium deoxycholate (NDC) and dicetyl phosphate (DP) elicited enhanced pharmacokinetic parameters and cytotoxic efficiency compared to those of the uncoated ones and Onkotaxel®. In conclusion, this approach offers a promising solution for DTX delivery.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Quitosana , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Lipossomos , Animais , Antineoplásicos/química , Disponibilidade Biológica , Fenômenos Químicos , Quitosana/química , Docetaxel/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipossomos/química , Tamanho da Partícula
3.
J Membr Biol ; 250(6): 605-616, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29127486

RESUMO

Hybrid vesicles are considered as a bridge between natural nanosystems (NNSs) and artificial nanosystems (ANSs). NNSs are extracellular vesicles (EVs), membranous, bio-formed endogenously, which act as endogenous cargoes, and reflecting cellular dynamics. EVs have cellular tropism, permeate tight junctions, and are non-immunogenic. EVs are used as tools in the development of diagnostic and therapeutic agents. ANSs can induce biogenesis of hybrid vesicles as promising smart diagnostic agents, and innovative drug cargoes. EVs can encapsulate small molecules, macromolecules, and ANSs. The manipulation of EVs during biogenesis was suggested for engineering hybrid EVs. This review article highlights the role of ANSs in the biogenesis of NNSs, and introduces hybrid nanosystems research.


Assuntos
Vesículas Extracelulares/química , Micropartículas Derivadas de Células/química , Sistemas de Liberação de Medicamentos/métodos , Exocitose/fisiologia
4.
Saudi Pharm J ; 25(1): 8-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28223857

RESUMO

Nanovesicles (NVs) represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs). Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.

5.
AAPS PharmSciTech ; 17(4): 978-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26729529

RESUMO

In this study, we investigated whether tacrolimus extracted and purified from the commercial capsules (Prograf® 5 mg) have retained its original quality and activity beyond the capsules expiration date in order to be reused for research purposes after extraction. High-performance liquid chromatography (HPLC) assay method was developed and validated for the quantification of tacrolimus, using cyclosporine A as an internal standard (IS). Moreover, a combination of analytical methods, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to assess the quality of extracted/purified tacrolimus. Suppression of murine peripheral-blood mononuclear cells (PBMC) proliferation and the levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) were also assessed. The data obtained showed no detectable differences in the quality profile between the authentic sample and extracted drug. Also, the results showed that the extracted/purified tacrolimus was able to suppress T cell proliferation, induced by concanavalin A, indicating the retained pharmacological activity. We proved that tacrolimus extracted/purified from expired Prograf® capsuled retains its purity and immunosuppressive activity and can be reused for research and possibly in pharmaceutical manufacturing.


Assuntos
Cápsulas/química , Cápsulas/farmacologia , Tacrolimo/química , Tacrolimo/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ciclosporina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imunossupressores/química , Imunossupressores/farmacologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
6.
Saudi Pharm J ; 24(1): 74-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26903771

RESUMO

Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin-chitosan nanogels (PR-CNG-ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR-CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR-CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR-CNG-ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR-CNG-ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR-CNG-ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR-CNG-ER are promising drug carriers to target liver cancer.

7.
Acta Pol Pharm ; 72(1): 171-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25850213

RESUMO

Meloxicam (MLX) has poor water solubility which leads to slow absorption following oral administration; hence, immediate release tablet is unsuitable in the treatment of acute pain. The aim of this study was to prepare a novel fast ultra-fine self-nanoemulsifying drug delivery system (UF-SNEDDS) of MLX for oral administration to facilitate drug release process in the stomach as well as comparing its in vitro dissolution with commercial Mobic and Mobitil tablets. MLX solubility in oils, mixed glycerides and surfactants with different HLB values was investigated. Based on MLX solubility profiles, eight UF-SNEDDSs composed of MLX, Cremophor RH 40 as oily phase, Capmul MCM-C8 or Tween 80 as surfactant and PEG 400 as co-solvent were prepared and evaluated for their spontaneous formation of emulsion, droplet size, turbidity and in vitro dissolution. The prepared novel MLX formulations showed a significant very low droplets size (up to 25 nm), thermodynamically stable and spontaneously formed nanoemulsion. MLX UF-SNEDDS formulations showed significant high percentage of drug dissolution (up to 70%) in simulated gastric fluid, compared with Mobic and Mobitil. In conclusion, due to higher drug release from MLX UF-SNEDDS formulations they could enhance its absorption and hence its bioavailability.


Assuntos
Emulsões/administração & dosagem , Mucosa Gástrica/metabolismo , Nanopartículas/administração & dosagem , Silicones/administração & dosagem , Água/química , Administração Oral , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Absorção Gástrica/efeitos da radiação , Nanopartículas/química , Material Particulado , Silicones/química , Solubilidade , Solventes/química
8.
ScientificWorldJournal ; 2014: 127495, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045724

RESUMO

The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also, in vitro skin permeation of LOR was conducted. The effect of hydroxypropyl ß-cyclodextrin (HP ß-CD), beta-cyclodextrin (ß-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 µg/cm(2)/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HP ß-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HP ß-CD and may be promising in enhancing permeation.


Assuntos
Resinas Acrílicas/farmacocinética , Piroxicam/análogos & derivados , Pele/metabolismo , Resinas Acrílicas/administração & dosagem , Administração Cutânea , Animais , Varredura Diferencial de Calorimetria , Humanos , Concentração de Íons de Hidrogênio , Masculino , Piroxicam/administração & dosagem , Piroxicam/farmacocinética , Coelhos , Absorção Cutânea , Viscosidade , beta-Ciclodextrinas/química
9.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125257

RESUMO

This study aimed to investigate the potential of polycaprolactone-vitamin E TPGS (PCL-TPGS) micelles as a delivery system for oral administration of paclitaxel (PTX). The PCL-TPGS copolymer was synthesized using ring opening polymerization, and PTX-loaded PCL-TPGS micelles (PTX micelles) were prepared via a co-solvent evaporation method. Characterization of these micelles included measurements of size, polydispersity, and encapsulation efficiency. The cellular uptake of PTX micelles was evaluated in Caco-2 cells using rhodamine 123 (Rh123) as a fluorescent probe. Moreover, an everted rat sac study was conducted to evaluate the ex vivo permeability of PTX micelles. Additionally, a comparative pharmacokinetic study of PTX micelles versus the marketed formulation, Ebetaxel® (a Taxol generic), was performed after a single oral administration to rats. The results demonstrated that the micellar formulation significantly improved PTX solubility (nearly 1 mg/mL). The in vitro stability and release of PTX micelles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that PTX micelles remained stable for up to 24 h and significantly slowed the release of PTX in both media compared to Ebetaxel®. The in vitro cellular uptake, ex vivo intestinal permeability, and in vivo pharmacokinetic profile demonstrated that PTX micelles enhanced the permeability and facilitated a rapid absorption of the drug. Conclusively, the PCL7000-TPGS3500 micelles exhibit potential as an effective oral delivery system for PTX.

10.
Pharmaceutics ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931828

RESUMO

The increasing prevalence of diabetic wounds presents a significant challenge due to the difficulty of natural healing and various obstacles. Dragon's blood (DB) and Alkanna tinctoria (AT) are well recognized for their potent healing abilities, which include potent antibacterial and anti-inflammatory activities. In this study, electrospun nanofibers (NFs) based on polyvinyl pyrrolidone (PVP) were co-loaded with both DB and AT, aiming to magnify their efficacy as wound-dressing applications for diabetic wound healing. The evaluation of these NFs as wound dressings was conducted using a streptozotocin-induced diabetic rat model. Electrospun NFs were prepared using the electrospinning of the PVP polymer, resulting in nanofibers with consistent, smooth surfaces. The loading capacity (LC) of AT and DB into NFs was 64.1 and 70.4 µg/mg, respectively, while in the co-loaded NFs, LC was 49.6 for AT and 57.2 µg/mg for DB. In addition, X-ray diffraction (XRD) revealed that DB and AT were amorphously dispersed within the NFs. The loaded NFs showed a dissolution time of 30 s in PBS (pH 7.4), which facilitated the release of AT and DB (25-38% after 10 min), followed by a complete release achieved after 180 min. The antibacterial evaluation demonstrated that the DB-AT mixture had potent activity against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). Along with that, the DB-AT NFs showed effective growth inhibition for both P. aeruginosa and S. aureus compared to the control NFs. Moreover, wound healing was evaluated in vivo in diabetic Wistar rats over 14 days. The results revealed that the DB-AT NFs improved wound healing within 14 days significantly compared to the other groups. These results highlight the potential application of the developed DB-AT NFs in wound healing management, particularly in diabetic wounds.

11.
Polymers (Basel) ; 15(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835942

RESUMO

Bromocriptine mesylate (BM), primarily ergocryptine, is a dopamine agonist derived from ergot alkaloids. This study aimed to formulate chitosan (CS)-coated poly ε-caprolactone nanoparticles (PCL NPs) loaded with BM for direct targeting to the brain via the nasal route. PCL NPs were optimized using response surface methodology and a Box-Behnken factorial design. Independent formulation parameters for nanoparticle attributes, including PCL payload (A), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) concentration (B), and sonication time (C), were investigated. The dependent variables were nanoparticle size (Y1), zeta potential (Y2), entrapment efficiency (EE; Y3), and drug release rate (Y4). The optimal formulation for BM-PCL NPs was determined to be 50 mg PCL load, 0.0865% TPGS concentration, and 8 min sonication time, resulting in nanoparticles with a size of 296 ± 2.9 nm having a zeta potential of -16.2 ± 3.8 mV, an EE of 90.7 ± 1.9%, and a zero-order release rate of 2.6 ± 1.3%/min. The optimized BM-PCL NPs were then coated with CS at varying concentrations (0.25, 0.5, and 1%) to enhance their effect. The CS-PCL NPs exhibited different particle sizes and zeta potentials depending on the CS concentration used. The highest EE (88%) and drug load (DL; 5.5%) were observed for the optimized BM-CS-PCL NPs coated with 0.25% CS. The BM-CS-PCL NPs displayed a biphasic release pattern, with an initial rapid drug release lasting for 2 h, followed by a sustained release for up to 48 h. The 0.25% CS-coated BM-CS-PCL NPs showed a high level of permeation across the goat nasal mucosa, with reasonable mucoadhesive strength. These findings suggested that the optimized 0.25% CS-coated BM-CS-PCL NPs hold promise for successful nasal delivery, thereby improving the therapeutic efficacy of BM.

12.
Gels ; 9(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37998947

RESUMO

Infected burned skin is a life-threatening condition, which may lead to sepsis. The aims of this work are to formulate a biofilm composed of silver sulfadiazine (SSD), chitosan (CS), and sodium alginate (SA), and to evaluate its wound-healing effectiveness. A full factorial design was used to formulate different matrix formulations. The prepared biofilm was tested for physicochemical, and in vitro release. The optimized formulation is composed of 0.833% of CS and 0.75% of SA. The release of SSD almost reached 100% after 6 h. The mechanical properties of the optimized formula were reasonable. The antibacterial activity for the optimized biofilm was significantly higher than that of blank biofilm, which is composed of CS and SA, p = 1.53922 × 10-12. Moreover, the in vivo study showed a 75% reduction in wound width when using the formulated SSD biofilm compared to standard marketed cream (57%) and the untreated group (0%).

13.
Heliyon ; 9(12): e22691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125510

RESUMO

Aloe perryi (AP) has gained considerable interest as a medicinal herb in various biological applications due to its rich phytochemical composition. However, the therapeutic benefits of AP could be potentiated by utilizing nanotechnology. Moreover, cationic solid lipid nanoparticles (CSLNs) possess remarkable characteristics that can greatly enrich a variety of biological uses. An optimization approach was used to achieve high-quality CSLNs to maximize the therapeutic efficacy of AP. Therefore, a factorial design was used to investigate the influence of various variables on the attributes of CSLNs quality. In this study, the factors under investigation were compritol 888 ATO (C-888, X1), poloxamer 188 (PL188, X2), and chitosan (CS, X3), which served as independent variables. The parameters measured as dependent variables included particle size (Y1), zeta potential (Y2), and encapsulation efficiency EE (Y3). The relationship among these variables was determined by Analysis of Variance (ANOVA) and response surface plots. The results revealed that PL188 played a significant role in reducing the particle size of CSLNS (ranging from 207 to 261 nm with 1 % PL188 to 167-229 nm with 3 % PL188). Conversely, an increase in the concentration of CS led to a rise in the particle size. The magnitude of positive zeta potential values was dependent on the increased concentration of CS. Moreover, the higher amounts of C-888 and PL188 improved the EE% of the CSLNs from 42 % to 86 %. Furthermore, a concentration-dependent antioxidant effect of the optimized AP-CSLNs was observed. The antioxidant activity of the optimized AP-CSLNs at 100 µg/mL was 75 % compared to 62 % and 60 % for AP-SLNs and AP solution, respectively. A similar pattern of improvement was also observed with antimicrobial, and anticancer activities of the optimized AP-CSLNs. These findings demonstrated the potential of AP-CSLNs as a carrier system, enhancing the biological activities of AP, opening new possibilities in herbal medicines.

14.
Pharmaceutics ; 14(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456660

RESUMO

The current study aimed to develop and evaluate a sustained-release transdermal Glipizide (GLP) film to overcome its oral administration problems. Chitosan (CS)-coated deformable liposomes (DLs) were utilized to enhance the drug transdermal delivery. The formulations were characterized in terms of particle size, zeta potential, entrapment efficiency (EE%), vesicle deformability, morphology, stability, and in vitro release. Transdermal films of chosen formulations were prepared by the solvent casting technique, and an ex vivo study throughout rat skin was also performed. Moreover, a pharmacokinetics (PK) study was carried out and blood glucose levels were estimated. All the liposomes were in the nanometer range and a high EE% was obtained from DLs compared to conventional liposomes (CL). The prepared formulations showed a high stability and the DLs exhibited a high deformability compared to CL. The in vitro release study confirmed the sustained release of GLP from both CL and DL and a more pronounced sustained release of GLP was detected after coating with CS. Moreover, GLP was shown to efficiently permeate through the rat skin from transdermal films by an ex vivo permeation test. The transdermal films showed a promising PK profile in the rat as compared with oral GLP. Most importantly, GLP-CS-DL1 demonstrated a higher hypoglycemic effect, confirming the possibility of systemic action by the local topical delivery of GLP.

15.
Gels ; 8(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36286136

RESUMO

Glaucoma is a long-term eye disease associated with high intraocular pressure (IOP), which seriously damages the eyes, causing blindness. For successful therapy, potent drugs and delivery systems are required. Metoprolol (MT) is believed to help reduce elevated IOP. The paradigm of ocular therapeutics may be changed by the integration of chitosan-coated liposomes (CLPs) with thermosensitive in situ gel (ISG). Therefore, MT-CLPs were developed and characterized and compared to uncoated ones (MT-LPs). Furthermore, MT-LP- and MT-CLP-loaded ISGs were prepared and characterized in in vitro, ex vivo, and in vivo studies. MT-LPs and MT-CLPs displayed spherical shapes with nanosize range, reasonable EE%, and significant bioadhesion. The zeta potential changed from negative to positive after CS coating. The extended in vitro drug release of MT-CLPs showed significant mucin mucoadhesion. The formed ISGs were homogeneous with a pH range of 7.34 to 7.08 and a rapid sol-gel transition at physiological temperature. MT-ISG1 (MT-LP) and MT-ISG2 (MT-CLPs-0.5) could increase ocular permeability by 2-fold and 4.4-fold compared to MT-ISG (pure MT). MT-ISG2 demonstrated significantly reduced IOP in rabbits without causing any irritation. In conclusion, MT-ISG2 markedly enhanced corneal permeability and reduced IOP. They would be promising carriers for MT for glaucoma management.

16.
Colloids Surf B Biointerfaces ; 197: 111380, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068824

RESUMO

Nanoerythrocytes membrane (NEs) has recently been used to improve pharmacokinetics and biodistribution for successful drug therapy. NEs intended to enhance the drug targeting due to immune evasion and long circulation. In this work, NEs could serve as efficient 5- fluorouracil (5-FU) carriers to target liver cells. NEs decorated 5-FU-loaded chitosan coated-poly (lactide-co-glycolic acid) nanoparticles (5-FU-C-NPs-NEs), chitosomes (5-FU-C-LPs-NEs) and 5-FU-NEs were prepared by hypotonic lysis and extrusion procedures. Moreover, 5-FU loaded-chitosan coated 5-FU-NPs (5-FU-C-NPs) and chitosomes (5-FU-C-LPs) for the compared issues were prepared. They were characterized in terms of particle size, encapsulation efficiency (EE), membrane protein content, phosphatidylserine exposure, surface morphology, and in vitro release profiles. Also, their cytotoxic efficacy was determined. Furthermore, pharmacokinetics and biodistribution studies were investigated for optimized formulation. The results revealed that 5-FU-C-NPs-NEs have narrow particle size distribution, desirable EE%, and retained the erythrocyte membrane properties as confirmed by polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, it displayed a sustained release profile up to 72 h of 5-FU-C-NPs-NEs compared to other formulations. In comparison to 5-FU solution and 5-FU-C-NPs, 5-FU-C-NPs-NEs extended the drug release time in vivo with highly uptake by the liver. These results suggest that the 5-FU-C-NPs-NEs could be used to deliver 5-FU and enhance its targetability to liver cancer.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Biomimética , Portadores de Fármacos , Fluoruracila , Humanos , Tamanho da Partícula , Distribuição Tecidual
17.
Curr Drug Deliv ; 18(1): 19-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32682379

RESUMO

AIM: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. BACKGROUND: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough information is available about this issue and further studies are required to address this assumption. OBJECTIVES: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (less than; 100 nm) using Box-Behnken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology. In addition, hemocompatibility and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. METHODS: Box-Behnken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. RESULT: The present results revealed that the optimized CSNS has ultrafine nanosize, (78.3 ± 0.22 nm), homogenous with PDI (0.131 ± 0.11), and ZP (31.9 ± 0.25 mV). Moreover, CSNS has a spherical shape, amorphous in structure, and physically stable. Moreover, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. CONCLUSION: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity, thus promising for use in intracellular organelles drug delivery.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Feminino , Humanos , Células MCF-7 , Tamanho da Partícula
18.
Bioengineered ; 12(1): 914-926, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33678142

RESUMO

This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fluoruracila , Lipoproteínas LDL , Lipossomos , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/química , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratos , Ratos Wistar
19.
Curr Drug Deliv ; 17(10): 826-844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32026776

RESUMO

The prevalence of liver cancer is increasing over the years and it is the fifth leading cause of mortality worldwide. The intrusive features and burden of low survival rate make it a global health issue in both developing and developed countries. The recommended chemotherapy drugs for patients in the intermediate and advanced stages of various liver cancers yield a low response rate due to the nonspecific nature of drug delivery, thus warranting the search for new therapeutic strategies and potential drug delivery carriers. There are several new drug delivery methods available to ferry the targeted molecules to the specific biological environment. In recent years, the nano assembly of lipoprotein moieties (lipidic nanoparticles) has emerged as a promising and efficiently tailored drug delivery system in liver cancer treatment. This increased precision of nano lipoproteins conjugates in chemotherapeutic targeting offers new avenues for the treatment of liver cancer with high specificity and efficiency. This present review is focused on concisely outlining the knowledge of liver cancer diagnosis, existing treatment strategies, lipoproteins, their preparation, mechanism and their potential application in the treatment of liver cancer.


Assuntos
Antineoplásicos , Portadores de Fármacos , Lipoproteínas , Neoplasias Hepáticas , Nanopartículas , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Hepáticas/tratamento farmacológico
20.
Front Pharmacol ; 10: 459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118895

RESUMO

OBJECTIVE: The aim of this study was to investigate the in vitro and in vivo performance of self-nanoemulsifying drug delivery systems (SNEDDSs) of talinolol (TAL), a poorly water-soluble drug. METHODS: Self-nanoemulsifying drug delivery systems of TAL were prepared using various oils, non-ionic surfactants and/or water-soluble co-solvents and assessed visually/by droplet size measurement. Equilibrium solubility of TAL in the anhydrous and diluted SNEDDS was conducted to achieve the maximum drug loading. The in vitro dissolution experiments and human red blood cells (RBCs) toxicity test, ex vivo gut permeation studies, and bioavailability of SNEDDS in rats were studied to compare the representative formulations with marketed product Cordanum® 50 mg and raw drug. RESULTS: The results from the characterization and solubility studies showed that SNEDDS formulations were stable with lower droplet sizes and higher TAL solubility. From the dissolution studies, it was found that the developed SNEDDS provided significantly higher rate of TAL release (>97% in 2.0 h) compared to raw TAL and marketed product Cordanum®. The RBC lysis test suggested negligible toxicity of the formulation to the cells. The ex vivo permeability assessment and in vivo pharmacokinetics study of a selected SNEDDS formulation (F6) showed about four-fold increase in permeability and 1.58-fold enhanced oral bioavailability of TAL in comparison to pure drug, respectively. CONCLUSION: Talinolol loaded SNEDDS formulations could be a potential oral pharmaceutical product with high drug-loading capacity, improved drug dissolution, increased gut permeation, reduced/no human RBC toxicity, and enhanced oral bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA