RESUMO
Nickel-iron (oxy)hydroxide (NiFeOxHy) stands as a cutting-edge nonprecious electrocatalyst for the oxygen evolution reaction (OER). However, the intrinsic thermodynamic instability of nickel and iron as anode materials in pure water-fed electrolyzers poses a significant durability challenge. In this study, an anion exchange ionomer coating was applied to NiFeOxHy to modify the local pH between a membrane and an electrode. This effectively extended the diffusion length of hydroxide anions toward the electrode, establishing an alkaline local pH environment. Stability tests with the ionomer coating showed reduced Ni dissolution. Moreover, locally resolved current density measurements were used to demonstrate a notably lower degradation rate during stability testing, revealing a 6-fold increase in stability with the ionomer on NiFeOxHy. In situ Raman spectroscopy in a neutral pH electrolyte confirmed inhibited Ni oxidation with the ionomer, mitigating Ni dissolution and enhancing stability of state-of-the-art NiFeOxHy catalysts in pure water-fed water electrolyzers.
RESUMO
In this study, we performed the CO2 reduction reaction (CO2RR) using a structural composite catalyst of cuprous oxide (Cu2O) and silver (Ag) that was simultaneously electrodeposited. While the underneath Ag electrodeposits maintained their spiky backbone structures even after the CO2RR, the Cu2O deposits were reduced to Cu(111) and relocated on the backbone template. The structural changes in Cu2O to Cu increase the active area of the Cu-Ag interface, resulting in a remarkable production rate of 125.01 µmol h-1 of liquid C2+ chemicals via the stabilization of the C-C coupling of the key intermediate species of acetaldehyde. This study provides new insights into designing a bimetallic catalyst for producing sustainable C2+ products from CO2 without any selectivity towards the production of methane.
RESUMO
Finding high-performance, low-cost, efficient catalysts for oxygen reduction reactions (ORR) is essential for sustainable energy conversion systems. Herein, highly efficient and durable iron (Fe) and cobalt (Co)-supported nitrogen (N) and sulfur (S) co-doped three-dimensional carbon nanofibers (FeCo-N, S@CNFs) were synthesized via electrospinning followed by carbonization. The as-prepared FeCo-N,S@CNFs served as efficient ORR catalysts in alkaline 0.1 m KOH solutions that were N2 and O2 -saturated. The experimental results revealed that FeCo-N,S@CNFs were highly active ORR catalysts with defect-rich active pyridinic N and pyrrolic N and metal bonds to N and S atom sites, which enhanced the ORR activity. FeCo-N,S@CNFs exhibited a high onset potential (Eonset =0.89â V) and half-wave potential (E1/2 =0.85â V), similar to the electrocatalytic activity of commercial Pt/C. Additionally, the durability of the as-prepared FeCo-N,S@CNFs catalysts was maintained for 14â h with long-term stability and high tolerance to methanol stability, accounting for their excellent catalytic ability. Furthermore, Co-N@CNFs, Fe-N@CNFs, and varying Fe and Co ratios were compared with those of FeCo-N,S@CNFs. Synergistic interactions between metals and heteroatoms were believed to play a significant role in enhancing the ORR activity. Owing to their excellent catalytic reduction ability, the as-prepared FeCo-N,S@CNFs can be widely used in battery-based systems and replace commercial Pt/C in fuel cell applications.