Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511403

RESUMO

Glioblastoma (GBM) contains cancer stem cells (CSC) that are resistant to treatment. GBM CSC expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity and tumorigenesis of GBM CSC. Our aim was to characterize the resulting effects of neuraminidase that removes A2B5 in order to target GBM CSC. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3 and GBM CSC lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM CSC lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM CSC lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563061

RESUMO

A2B5 IgM recognizes c-series gangliosides with three sialic acids. The aim of this review was to focus on A2B5 expression in the central nervous system and gliomas. In brain development, A2B5+ cells are recorded in areas containing multipotent neural stem cells (NSC). In adults, A2B5+ cells persist in neurogenic areas and in white matter where it identifies oligodendrocyte precursor cells (OPCs) but also cells with NSC properties. Although the expression of A2B5 has been widely studied in culture, where it characterizes bipotential glial progenitor cells, its expression in vivo is less characterized mainly because of technical issues. A new interest was given to the NSCs and OPCs since the discovery of cancer stem cells (CSC) in gliomas. Among other cell surface molecules, A2B5 has been identified as an accurate marker to identify glioma CSCs. We and others have shown that all types of gliomas express A2B5, and that only A2B5+ cells, and not A2B5- cells, can generate a tumor after orthotopic implantation in immunocompromised animals. Moreover, A2B5 epitope expression is positively correlated with stemness and tumor growth. This review highlights that A2B5 is an attractive target to tackle glioma CSCs, and a better characterization of its expression in the developing and adult CNS will benefit to a better understanding of gliomagenesis.


Assuntos
Glioma , Animais , Diferenciação Celular , Sistema Nervoso Central/metabolismo , Gangliosídeos/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neuroglia/metabolismo
3.
Stem Cells ; 37(6): 731-742, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920104

RESUMO

In glioblastomas, apoptosis inhibitor proteins (IAPs) are involved in apoptotic and nonapoptotic processes. We previously showed that IAP inhibition induced a loss of stemness and glioblastoma stem cells differentiation by activating nuclear factor-κB under normoxic conditions. Hypoxia has been shown to modulate drug efficacy. Here, we investigated how IAPs participate in glioblastoma stem-like cell maintenance and fate under hypoxia. We showed that in a hypoxic environment, IAPs inhibition by GDC-0152, a small-molecule IAPs inhibitor, triggered stem-like cell apoptosis and decreased proliferation in four human glioblastoma cell lines. We set up a three-dimensional glioblastoma spheroid model in which time-of-flight secondary ion mass spectrometry analyses revealed a decrease in oxygen levels between the periphery and core. We observed low proliferative and apoptotic cells located close to the hypoxic core of the spheres and glial fibrillary acidic protein+ cells at their periphery. These oxygen-dependent GDC-0152 antitumoral effects have been confirmed on human glioblastoma explants. Notably, serine-threonine kinase activation analysis revealed that under hypoxic conditions, IAP inhibition activated ataxia telangiectasia and Rad3-related protein signaling. Our findings provide new insights into the dual mechanism of action of IAP inhibitors that depends on oxygen level and are relevant to their therapeutic application in tumors. Stem Cells 2019;37:731-742.


Assuntos
Apoptose/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Oxigênio/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Apoptose/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloexanos/farmacologia , Inibidores Enzimáticos/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oxigênio/metabolismo , Pirróis/farmacologia , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Técnicas de Cultura de Tecidos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
4.
J Biol Chem ; 291(20): 10684-99, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27002148

RESUMO

Glioblastomas are the most common primary brain tumors, highly vascularized, infiltrating, and resistant to current therapies. This cancer leads to a fatal outcome in less than 18 months. The aggressive behavior of glioblastomas, including resistance to current treatments and tumor recurrence, has been attributed to glioma stemlike/progenitor cells. The transcription factor EGR1 (early growth response 1), a member of a zinc finger transcription factor family, has been described as tumor suppressor in gliomas when ectopically overexpressed. Although EGR1 expression in human glioblastomas has been associated with patient survival, its precise location in tumor territories as well as its contribution to glioblastoma progression remain elusive. In the present study, we show that EGR1-expressing cells are more frequent in high grade gliomas where the nuclear expression of EGR1 is restricted to proliferating/progenitor cells. We show in primary cultures of glioma stemlike cells that EGR1 contributes to stemness marker expression and proliferation by orchestrating a PDGFA-dependent growth-stimulatory loop. In addition, we demonstrate that EGR1 acts as a positive regulator of several important genes, including SHH, GLI1, GLI2, and PDGFA, previously linked to the maintenance and proliferation of glioma stemlike cells.


Assuntos
Comunicação Autócrina , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Crescimento Derivado de Plaquetas/biossíntese , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/patologia , Humanos , Masculino , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas
5.
Exp Cell Res ; 321(2): 99-108, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355810

RESUMO

Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies.


Assuntos
Proliferação de Células , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/patologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cultura Primária de Células/métodos , Tolerância a Radiação , Alicerces Teciduais , Animais , Forma Celular , Humanos , Camundongos , Camundongos Nus , Alicerces Teciduais/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Neurooncol Adv ; 6(1): vdae038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590763

RESUMO

Glioblastoma is the most frequent and aggressive primary brain tumor in adults. Currently, no curative treatment is available. Despite first-line treatment composed by the association of surgery, radiotherapy, and chemotherapy, relapse remains inevitable in a median delay of 6 to 10 months. Improving patient management and developing new therapeutic strategies are therefore a critical medical need in neuro-oncology. Gangliosides are sialic acid-containing glycosphingolipids, the most abundant in the nervous system, representing attractive therapeutic targets. The ganglioside GD3 is highly expressed in neuroectoderm-derived tumors such as melanoma and neuroblastoma, but also in gliomas. Moreover, interesting results, including our own, have reported the involvement of GD3 in the stemness of glioblastoma cells. In this review, we will first describe the characteristics of the ganglioside GD3 and its enzyme, the GD3 synthase (GD3S), including their biosynthesis and metabolism. Then, we will detail their expression and role in gliomas. Finally, we will summarize the current knowledge regarding the therapeutic development opportunities against GD3 and GD3S.

7.
EBioMedicine ; 95: 104752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572644

RESUMO

BACKGROUND: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS: Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION: Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING: This study was funded by institutional grants and charities.


Assuntos
Antineoplásicos , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Aurora Quinase A , Sinergismo Farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Combinação de Medicamentos
8.
Ann Surg Oncol ; 19 Suppl 3: S608-19, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21989663

RESUMO

BACKGROUND: Cellular self-renewal capacity in glioblastomas is heterogeneous, with only stem-like cells having this property. These cells generate a specific tumor phenotype, but no link with tumor location or molecular characteristics has ever been made. METHODS: Two cells lines, established from cell-dissociated glioblastomas and A2B5+ magnetic cell sorting, were used to decipher the mechanisms of cell migration in glioblastomas. GBM6 was derived from a glioblastoma close to the subventricular zone, whereas GBM9 was derived from a cortical glioblastoma and contained a high number of CD133(+) cells. RESULTS: Orthotopic injections in both the subventricular zone and the cortex of nude mice showed that GBM6 and GBM9 cells had a differential pattern of migration that mirrored that of adult and fetal normal neural stem cells, respectively. GBM6 demonstrated higher tumorigenicity than GBM9, and whichever cell line was injected, subventricular zone-implanted tumors were larger than cortical ones. In vitro, GBM6 and GBM9 displayed high autorenewal and proliferation rates, and their expression profiles and genomic status showed that they had distinctive molecular signatures: GBM6 was classified as a mesenchymal glioblastoma and GBM9 as a proneural glioblastoma. CONCLUSIONS: Altogether, our findings suggest that tumor location in addition to molecular signature influence tumor growth and migration pattern.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Mensageiro/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Córtex Cerebral , Genótipo , Glioblastoma/patologia , Glicoproteínas/metabolismo , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo
9.
Cancers (Basel) ; 11(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466399

RESUMO

A2B5+ cells isolated from human glioblastomas exhibit cancer stem cell properties. The A2B5 epitope belongs to the sialoganglioside family and is synthetized by the ST8 alpha-N-acetyl-neuraminidase α-2,8-sialyltransferase 3 (ST8SIA3) enzyme. Glycolipids represent attractive targets for solid tumors; therefore, the aim of this study was to decipher A2B5 function in glioblastomas. To this end, we developed cell lines expressing various levels of A2B5 either by genetically manipulating ST8SIA3 or by using neuraminidase. The overexpression of ST8SIA3 in low-A2B5-expressing cells resulted in a dramatic increase of A2B5 immunoreactivity. ST8SIA3 overexpression increased cell proliferation, migration, and clonogenicity in vitro and tumor growth when cells were intracranially grafted. Conversely, lentiviral ST8SIA3 inactivation in low-A2B5-expressing cells resulted in reduced proliferation, migration, and clonogenicity in vitro and extended mouse survival. Furthermore, in the shST8SIA3 cells, we found an active apoptotic phenotype. In high-A2B5-expressing cancer stem cells, lentiviral delivery of shST8SIA3 stopped cell growth. Neuraminidase treatment, which modifies the A2B5 epitope, impaired cell survival, proliferation, self-renewal, and migration. Our findings prove the crucial role of the A2B5 epitope in the promotion of proliferation, migration, clonogenicity, and tumorigenesis, pointing at A2B5 as an attractive therapeutic target for glioblastomas.

10.
Cell Death Dis ; 9(10): 984, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250248

RESUMO

Glioblastoma (GBM) is characterized by highly aggressive growth and invasive behavior. Due to the highly lethal nature of GBM, new therapies are urgently needed and repositioning of existing drugs is a promising approach. We have previously shown the activity of Proscillaridin A (ProA), a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase (NKA) pump, against proliferation and migration of GBM cell lines. ProA inhibited tumor growth in vivo and increased mice survival after orthotopic grafting of GBM cells. This study aims to decipher the mechanism of action of ProA in GBM tumor and stem-like cells. ProA displayed cytotoxic activity on tumor and stem-like cells grown in 2D and 3D culture, but not on healthy cells as astrocytes or oligodendrocytes. Even at sub-cytotoxic concentration, ProA impaired cell migration and disturbed EB1 accumulation at microtubule (MT) plus-ends and MT dynamics instability. ProA activates GSK3ß downstream of NKA inhibition, leading to EB1 phosphorylation on S155 and T166, EB1 comet length shortening and MT dynamics alteration, and finally inhibition of cell migration and cytotoxicity. Similar results were observed with digoxin. Therefore, we disclosed here a novel pathway by which ProA and digoxin modulate MT-governed functions in GBM tumor and stem-like cells. Altogether, our results support ProA and digoxin as potent candidates for drug repositioning in GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Microtúbulos/metabolismo , Proscilaridina/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Bombas de Íon/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
11.
Oncotarget ; 7(1): 902-13, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26637806

RESUMO

Glioblastomas in adults are highly heterogeneous tumors that can develop throughout the brain. To date no predictive-location marker has been identified. We previously derived two glioblastoma cell lines from cortical and periventricular locations and demonstrated distinct transcriptomic profiles. Based on these preliminary results, the aim of this study was to correlate glioblastoma locations with the expression of ten selected genes (VEGFC, FLT4, MET, HGF, CHI3L1, PROM1, NOTCH1, DLL3, PDGFRA, BCAN). Fifty nine patients with newly diagnosed glioblastomas were retrospectively included. Tumors were classified into cortical and periventricular locations, which were subsequently segregated according to cerebral lobes involved: cortical fronto-parietal (C-FP), cortical temporal (C-T), periventricular fronto-parietal (PV-FP), periventricular temporal (PV-T), and periventricular occipital (PV-O). Gene expression levels were determined using RT-qPCR. Compared to cortical glioblastomas, periventricular glioblastomas were characterized by a higher expression of two mesenchymal genes, VEGFC (p = 0.001) and HGF (p = 0.001). Among cortical locations, gene expressions were homogeneous. In contrast, periventricular locations exhibited distinct expression profiles. PV-T tumors were associated with higher expression of two proneural and cancer stem cell genes, NOTCH1 (p = 0.028) and PROM1 (p = 0.033) while PV-FP tumors were characterized by high expression of a mesenchymal gene, CHI3L1 (p = 0.006). Protein expression of NOTCH1 was correlated with RNA expression levels. PV-O glioblastomas were associated with lower expression of VEGFC (p = 0.032) than other periventricular locations, whereas MET overexpression remained exceptional. These data suggest a differential gene expression profile according to initial glioblastoma location.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Heterogeneidade Genética , Glioblastoma/genética , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/classificação , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/genética , Adulto Jovem
12.
Oncotarget ; 5(21): 10934-48, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25400117

RESUMO

Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers.


Assuntos
Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioblastoma/patologia , Proscilaridina/farmacologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Ensaios de Triagem em Larga Escala , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 5(24): 12769-87, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25473893

RESUMO

End-binding 1 protein (EB1) is a key player in the regulation of microtubule (MT) dynamics. Here, we investigated the role of EB1 in glioblastoma (GBM) tumor progression and its potential predictive role for response to Vinca-alkaloid chemotherapy. Immunohistological analysis of the 109 human GBM cases revealed that EB1 overexpression correlated with poor outcome including progression-free survival and overall survival. Downregulation of EB1 by shRNA inhibited cell migration and proliferation in vitro. Conversely, EB1 overexpression promoted them and accelerated tumor growth in orthotopically-transplanted nude mice. Furthermore, EB1 was largely overexpressed in stem-like GBM6 that display in vivo a higher tumorigenicity with a more infiltrative pattern of migration than stem-like GBM9. GBM6 showed strong and EB1-dependent migratory potential. The predictive role of EB1 in the response of GBM cells to chemotherapy was investigated. Vinflunine and vincristine increased survival of EB1-overexpressing U87 bearing mice and were more effective to inhibit cell migration and proliferation in EB1-overexpressing clones than in controls. Vinca inhibited the increase of MT growth rate and growth length induced by EB1 overexpression. Altogether, our results show that EB1 expression level has a prognostic value in GBM, and that Vinca-alkaloid chemotherapy could improve the treatment of GBM patients with EB1-overexpressing tumor.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Alcaloides de Vinca/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Intervalo Livre de Doença , Feminino , Glioblastoma/patologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Acta Neuropathol Commun ; 1: 17, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252689

RESUMO

BACKGROUND: Pilocytic astrocytomas occur predominantly in childhood. In contrast to the posterior fossa location, hypothalamo-chiasmatic pilocytic astrocytomas display a worse prognosis often leading to multiple surgical procedures and/or several lines of chemotherapy and radiotherapy to achieve long-term control. Hypothalamo-chiasmatic pilocytic astrocytomas and cerebellar pilocytic astrocytomas have a distinctive gene signature and several differential expressed genes (ICAM1, CRK, CD36, and IQGAP1) are targets for available drugs: fluvastatin and/or celecoxib. RESULTS: Quantification by RT-Q-PCR of the expression of these genes was performed in a series of 51 pilocytic astrocytomas and 10 glioblastomas: they were all significantly overexpressed in hypothalamo-chiasmatic pilocytic astrocytomas relative to cerebellar pilocytic astrocytomas, and CRK and ICAM1 were significantly overexpressed in pilocytic astrocytomas versus glioblastomas.We used two commercially available glioblastoma cell lines and three pilocytic astrocytoma explant cultures to investigate the effect of celecoxib/fluvastatin alone or in combination. Glioblastoma cell lines were sensitive to both drugs and a combination of 100 µM celecoxib and 240 µM fluvastatin was the most synergistic. This synergistic combination was used on the explant cultures and led to massive cell death of pilocytic astrocytoma cells.As a proof of concept, a patient with a refractory multifocal pilocytic astrocytoma was successfully treated with the fluvastatin/celecoxib combination used for 18 months. It was well tolerated and led to a partial tumor response. CONCLUSION: This study reports evidence for new targets and synergistic effect of celecoxib/fluvastatin combination in pilocytic astrocytoma. Because it is non-toxic, this new strategy offers hope for the treatment of patients with refractory pilocytic astrocytoma.


Assuntos
Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Astrocitoma/patologia , Astrocitoma/fisiopatologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Antígenos CD36/metabolismo , Celecoxib , Linhagem Celular Tumoral , Pré-Escolar , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Sinergismo Farmacológico , Ácidos Graxos Monoinsaturados/efeitos adversos , Feminino , Fluvastatina , Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Indóis/efeitos adversos , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Pirazóis/efeitos adversos , Sulfonamidas/efeitos adversos , Técnicas de Cultura de Tecidos , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA