Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 175(4): 1156-1167.e15, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270040

RESUMO

The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterium-rich environment. It is unknown whether these tasks are spatially zonated along the villus axis. Here, we extracted a large panel of landmark genes characterized by transcriptomics of laser capture microdissected villus segments and utilized it for single-cell spatial reconstruction, uncovering broad zonation of enterocyte function along the villus. We found that enterocytes at villus bottoms express an anti-bacterial gene program in a microbiome-dependent manner. They next shift to sequential expression of carbohydrates, peptides, and fat absorption machineries in distinct villus compartments. Finally, they induce a Cd73 immune-modulatory program at the villus tips. Our approach can be used to uncover zonation patterns in other organs when prior knowledge of landmark genes is lacking.


Assuntos
Enterócitos/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Movimento Celular , Enterócitos/citologia , Enterócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
2.
Nature ; 632(8027): 1101-1109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112711

RESUMO

The mouse small intestine shows profound variability in gene expression along the crypt-villus axis1,2. Whether similar spatial heterogeneity exists in the adult human gut remains unclear. Here we use spatial transcriptomics, spatial proteomics and single-molecule fluorescence in situ hybridization to reconstruct a comprehensive spatial expression atlas of the adult human proximal small intestine. We describe zonated expression and cell type representation for epithelial, mesenchymal and immune cell types. We find that migrating enterocytes switch from lipid droplet assembly and iron uptake at the villus bottom to chylomicron biosynthesis and iron release at the tip. Villus tip cells are pro-immunogenic, recruiting γδ T cells and macrophages to the tip, in contrast to their immunosuppressive roles in mouse. We also show that the human small intestine contains abundant serrated and branched villi that are enriched at the tops of circular folds. Our study presents a detailed resource for understanding the biology of the adult human small intestine.


Assuntos
Biologia Celular , Perfilação da Expressão Gênica , Intestino Delgado , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Movimento Celular , Quilomícrons/biossíntese , Enterócitos/metabolismo , Enterócitos/citologia , Células Epiteliais , Hibridização in Situ Fluorescente , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Ferro/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Proteômica , Imagem Individual de Molécula , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma
3.
Nature ; 611(7936): 563-569, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352220

RESUMO

Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.


Assuntos
Regulação da Expressão Gênica , Hepatócitos , Fígado , Malária , Parasitos , Plasmodium berghei , Análise de Célula Única , Animais , Hepatócitos/citologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Fígado/anatomia & histologia , Fígado/citologia , Fígado/imunologia , Fígado/parasitologia , Malária/genética , Malária/imunologia , Malária/parasitologia , Parasitos/genética , Parasitos/imunologia , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium berghei/metabolismo , Imagem Individual de Molécula , Análise de Sequência de RNA , Ferro/metabolismo , Ácidos Graxos/metabolismo , Transcrição Gênica , Genes de Protozoários/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia
4.
PLoS Biol ; 19(10): e3001214, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634036

RESUMO

The intestine is lined with isolated lymphoid follicles (ILFs) that facilitate sampling of luminal antigens to elicit immune responses. Technical challenges related to the scarcity and small sizes of ILFs and their follicle-associated epithelium (FAE) impeded the characterization of their spatial gene expression programs. Here, we combined RNA sequencing of laser capture microdissected tissues with single-molecule transcript imaging to obtain a spatial gene expression map of the ILF and its associated FAE in the mouse small intestine. We identified zonated expression programs in both follicles and FAEs, with a decrease in enterocyte antimicrobial and absorption programs and a partial induction of expression programs normally observed at the villus tip. We further identified Lepr+ subepithelial telocytes at the FAE top, which are distinct from villus tip Lgr5+ telocytes. Our analysis exposes the epithelial and mesenchymal cell states associated with ILFs.


Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica , Intestinos/metabolismo , Tecido Linfoide/metabolismo , Animais , Regulação para Baixo/genética , Enterócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Telócitos/metabolismo
5.
Mol Cell ; 58(1): 147-56, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25728770

RESUMO

Bursts of nascent mRNA have been shown to lead to substantial cell-cell variation in unicellular organisms, facilitating diverse responses to environmental challenges. It is unknown whether similar bursts and gene-expression noise occur in mammalian tissues. To address this, we combine single molecule transcript counting with dual-color labeling and quantification of nascent mRNA to characterize promoter states, transcription rates, and transcript lifetimes in the intact mouse liver. We find that liver gene expression is highly bursty, with promoters stochastically switching between transcriptionally active and inactive states. Promoters of genes with short mRNA lifetimes are active longer, facilitating rapid response while reducing burst-associated noise. Moreover, polyploid hepatocytes exhibit less noise than diploid hepatocytes, suggesting a possible benefit to liver polyploidy. Thus, temporal averaging and liver polyploidy dampen the intrinsic variability associated with transcriptional bursts. Our approach can be used to study transcriptional bursting in diverse mammalian tissues.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , Transcrição Gênica , Animais , Meia-Vida , Hepatócitos/citologia , Homeostase/genética , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Ploidias , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Análise de Célula Única
6.
Gut ; 71(10)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046090

RESUMO

BACKGROUND: Colonoscopy is the gold standard for evaluation of inflammation in inflammatory bowel diseases (IBDs), yet entails cumbersome preparations and risks of injury. Existing non-invasive prognostic tools are limited in their diagnostic power. Moreover, transcriptomics of colonic biopsies have been inconclusive in their association with clinical features. AIMS: To assess the utility of host transcriptomics of faecal wash samples of patients with IBD compared with controls. METHODS: In this prospective cohort study, we obtained biopsies and faecal-wash samples from patients with IBD and controls undergoing lower endoscopy. We performed RNAseq of biopsies and matching faecal-washes, and associated them with endoscopic and histological inflammation status. We also performed faecal mass-spectrometry proteomics on a subset of samples. We inferred cell compositions using computational deconvolution and used classification algorithms to identify informative genes. RESULTS: We analysed biopsies and faecal washes from 39 patients (20 IBD, 19 controls). Host faecal-transcriptome carried information that was distinct from biopsy RNAseq and faecal proteomics. Transcriptomics of faecal washes, yet not of biopsies, from patients with histological inflammation were significantly correlated to one another (p=5.3×10-12). Faecal-transcriptome had significantly higher statistical power in identifying histological inflammation compared with transctiptome of intestinal biopsies (150 genes with area under the curve >0.9 in faecal samples vs 10 genes in biopsy RNAseq). These results were replicated in a validation cohort of 22 patients (10 IBD, 12 controls). Faecal samples were enriched in inflammatory monocytes, regulatory T cells, natural killer-cells and innate lymphoid cells. CONCLUSIONS: Faecal wash host transcriptome is a statistically powerful biomarker reflecting histological inflammation. Furthermore, it opens the way to identifying important correlates and therapeutic targets that may be obscured using biopsy transcriptomics.

7.
Mol Syst Biol ; 16(12): e9682, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332768

RESUMO

Malignant cell growth is fueled by interactions between tumor cells and the stromal cells composing the tumor microenvironment. The human liver is a major site of tumors and metastases, but molecular identities and intercellular interactions of different cell types have not been resolved in these pathologies. Here, we apply single cell RNA-sequencing and spatial analysis of malignant and adjacent non-malignant liver tissues from five patients with cholangiocarcinoma or liver metastases. We find that stromal cells exhibit recurring, patient-independent expression programs, and reconstruct a ligand-receptor map that highlights recurring tumor-stroma interactions. By combining transcriptomics of laser-capture microdissected regions, we reconstruct a zonation atlas of hepatocytes in the non-malignant sites and characterize the spatial distribution of each cell type across the tumor microenvironment. Our analysis provides a resource for understanding human liver malignancies and may expose potential points of interventions.


Assuntos
Anatomia Artística , Atlas como Assunto , Neoplasias Hepáticas/patologia , Análise de Célula Única , Microambiente Tumoral , Animais , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Camundongos , Microambiente Tumoral/genética
8.
Cell Tissue Res ; 368(2): 405-410, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27301446

RESUMO

The liver is a polyploid organ, consisting of hepatocytes with one or two nuclei each containing 2, 4, 8 or more haploid chromosome sets. The dynamic changes in the spatial distributions of polyploid classes across the liver lobule, its repeating anatomical unit, have not been characterized. Identifying these spatial patterns is important for understanding liver homeostatic and regenerative turnover, as well as potential division of labor among ploidy classes. Here, we use single molecule-based tissue imaging to reconstruct the spatial zonation profiles of liver polyploid classes in mice of different ages. We find that liver polyploidy proceeds in spatial waves, advancing more rapidly in the mid-lobule zone compared to the periportal and perivenous zones. We also measure the spatial zonation profiles of S-phase entry at different ages and identify more rapid S-phase entry in the mid-lobule zone at older ages. Our findings reveal fundamental features of liver spatial heterogeneity and highlight their dynamic changes during development and aging.


Assuntos
Fígado/anatomia & histologia , Poliploidia , Animais , Hepatócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Fase S , Fatores de Tempo
9.
Methods ; 98: 134-142, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26611432

RESUMO

A key challenge in mammalian biology is to understand how rates of transcription and mRNA degradation jointly shape cellular gene expression. Powerful techniques have been developed for measuring these rates either genome-wide or at the single-molecule level, however these techniques are not applicable to assessment of cells within their native tissue microenvironment. Here we describe a technique based on single molecule Fluorescence in-situ Hybridization (smFISH) to measure transcription and degradation rates in intact mammalian tissues. The technique is based on dual-color libraries targeting the introns and exons of the genes of interest, enabling visualization and quantification of both nascent and mature mRNA. We present a software, TransQuant, that facilitates quantifying these rates from smFISH images. Our approach enables assessment of both transcription and degradation rates of any gene of interest while controlling for the inherent heterogeneity of intact tissues.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Argininossuccinato Sintase/genética , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , Imagem Individual de Molécula/métodos , Software , Transcrição Gênica , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Argininossuccinato Sintase/metabolismo , Microambiente Celular , Éxons , Corantes Fluorescentes/química , Hibridização in Situ Fluorescente/estatística & dados numéricos , Íntrons , Fígado/metabolismo , Camundongos , Sondas Moleculares/química , Estabilidade de RNA , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/estatística & dados numéricos , Bibliotecas de Moléculas Pequenas/química , Biologia de Sistemas/métodos
10.
J Biol Chem ; 289(34): 23882-92, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25016019

RESUMO

The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2'-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation.


Assuntos
Metilação de DNA , Endoderma/crescimento & desenvolvimento , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Animais , Sequência de Bases , Linhagem Celular , Imunoprecipitação da Cromatina , Primers do DNA , Citometria de Fluxo , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
11.
J Biol Chem ; 287(24): 20154-63, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22493486

RESUMO

GPR41 is a G protein-coupled receptor activated by short chain fatty acids. The gene encoding GPR41 is located immediately downstream of a related gene encoding GPR40, a receptor for long chain fatty acids. Expression of GPR41 has been reported in a small number of cell types, including gut enteroendocrine cells and sympathetic ganglia, where it may play a role in the maintenance of metabolic homeostasis. We now demonstrate that GPR41, like GPR40, is expressed in pancreatic beta cells. Surprisingly, we found no evidence for transcriptional control elements or transcriptional initiation in the intergenic GPR40-GPR41 region. Rather, using 5'-rapid amplification of cDNA ends analysis, we demonstrated that GPR41 is transcribed from the promoter of the GPR40 gene. We confirmed this finding by generating bicistronic luciferase reporter plasmids, and we were able to map a potential internal ribosome entry site-containing region to a 2474-nucleotide region of the intergenic sequence. Consistent with this, we observed m(7)G cap-independent reporter gene expression upon transfection of RNA containing this region. Thus, GPR41 expression is mediated via an internal ribosome entry site located in the intergenic region of a bicistronic mRNA. This novel sequence organization may be utilized to permit coordinated regulation of the fatty acid receptors GPR40 and GPR41.


Assuntos
Regulação da Expressão Gênica/fisiologia , Biossíntese de Proteínas/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Animais , Cricetinae , DNA Complementar/genética , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Pâncreas/citologia , Pâncreas/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Receptores Acoplados a Proteínas G/genética
12.
Nat Metab ; 5(11): 1858-1869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857731

RESUMO

The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.


Assuntos
Colite , Masculino , Camundongos , Animais , Colite/induzido quimicamente , Mucosa Intestinal , Células Epiteliais
13.
Artigo em Inglês | MEDLINE | ID: mdl-36791991

RESUMO

BACKGROUND & AIMS: Noninvasive modalities for assessing active endoscopic and histologic inflammation in Crohn's disease and ulcerative colitis patients are critically needed. Fecal wash host shed-cell transcriptomics has been shown to be a robust classifier of endoscopic and histologic inflammation in inflammatory bowel disease patients with distal colitis. Whether such fecal washes can inform on inflammatory processes occurring in more proximal intestinal segments is currently unknown. METHODS: Fifty-nine inflammatory bowel disease patients and 50 controls were prospectively enrolled. Biopsy specimens and fecal washes from the distal colon, proximal colon, and terminal ileum were compared. Host transcriptomics were performed on the biopsy specimens and fecal washes obtained during colonoscopy at predefined locations throughout the colon and terminal ileum and results were associated with concurrent clinical, endoscopic, and histologic parameters. RESULTS: We found that host transcriptomics of distal fecal washes robustly classify histologic inflammation in ileal and proximal colonic Crohn's disease, even without distal colonic involvement (area under the receiver operating characteristic curve, 0.94 ± 0.09). We further found that fecal washes consist of modules of co-expressed genes of immune, stromal, and epithelial origin that are indicative of endoscopic disease severity. Fecal wash host transcriptomics also captures expression of gene modules previously associated with a lack of response to biological therapies. CONCLUSIONS: Our study establishes the accuracy of distal colonic fecal washes for identifying and scoring inflammatory processes throughout the entire ileal-colonic axis.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/genética , Doença de Crohn/patologia , Transcriptoma/genética , Colo/patologia , Inflamação/genética , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Íleo/patologia
14.
Cell Stem Cell ; 29(6): 973-989.e10, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659879

RESUMO

The liver carries a remarkable ability to regenerate rapidly after acute zonal damage. Single-cell approaches are necessary to study this process, given the spatial heterogeneity of liver cell types. Here, we use spatially resolved single-cell RNA sequencing (scRNA-seq) to study the dynamics of mouse liver regeneration after acute acetaminophen (APAP) intoxication. We find that hepatocytes proliferate throughout the liver lobule, creating the mitotic pressure required to repopulate the necrotic pericentral zone rapidly. A subset of hepatocytes located at the regenerating front transiently upregulate fetal-specific genes, including Afp and Cdh17, as they reprogram to a pericentral state. Zonated endothelial, hepatic stellate cell (HSC), and macrophage populations are differentially involved in immune recruitment, proliferation, and matrix remodeling. We observe massive transient infiltration of myeloid cells, yet stability of lymphoid cell abundance, in accordance with a global decline in antigen presentation. Our study provides a resource for understanding the coordinated programs of zonal liver regeneration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Regeneração Hepática , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos
15.
Nat Commun ; 12(1): 3074, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031373

RESUMO

Single-cell RNA sequencing combined with spatial information on landmark genes enables reconstruction of spatially-resolved tissue cell atlases. However, such approaches are challenging for rare cell types, since their mRNA contents are diluted in the spatial transcriptomics bulk measurements used for landmark gene detection. In the small intestine, enterocytes, the most common cell type, exhibit zonated expression programs along the crypt-villus axis, but zonation patterns of rare cell types such as goblet and tuft cells remain uncharacterized. Here, we present ClumpSeq, an approach for sequencing small clumps of attached cells. By inferring the crypt-villus location of each clump from enterocyte landmark genes, we establish spatial atlases for all epithelial cell types in the small intestine. We identify elevated expression of immune-modulatory genes in villus tip goblet and tuft cells and heterogeneous migration patterns of enteroendocrine cells. ClumpSeq can be applied for reconstructing spatial atlases of rare cell types in other tissues and tumors.


Assuntos
Transporte Biológico/genética , Transporte Biológico/fisiologia , Biologia Computacional/métodos , Intestinos/fisiologia , Animais , Diferenciação Celular , Enterócitos/metabolismo , Células Enteroendócrinas/metabolismo , Células Epiteliais/metabolismo , Epitélio , Expressão Gênica , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
16.
Nat Metab ; 3(1): 43-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432202

RESUMO

The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. However, liver zonation has previously been analysed as a static phenomenon, and liver chronobiology has been analysed at tissue-level resolution. Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time. Using mixed-effect models of messenger RNA expression and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, and most of them show multiplicative space-time effects. Such dually regulated genes cover not only key hepatic functions such as lipid, carbohydrate and amino acid metabolism, but also previously unassociated processes involving protein chaperones. Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation. Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at the sub-lobular scale.


Assuntos
Relógios Circadianos/genética , Expressão Gênica/fisiologia , Fígado/metabolismo , Periodicidade , Algoritmos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Proteínas Circadianas Period/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Via de Sinalização Wnt/genética
17.
Nat Med ; 27(12): 2104-2107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887578

RESUMO

Generation of beta cells via transdifferentiation of other cell types is a promising avenue for the treatment of diabetes. Here we reconstruct a single-cell atlas of the human fetal and neonatal small intestine. We identify a subset of fetal enteroendocrine K/L cells that express high levels of insulin and other beta cell genes. Our findings highlight a potential extra-pancreatic source of beta cells and expose its molecular blueprint.


Assuntos
Células Enteroendócrinas/metabolismo , Desenvolvimento Fetal , Insulina/metabolismo , Humanos
18.
Oncogene ; 40(1): 127-139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093654

RESUMO

The oncofetal long noncoding RNA (lncRNA) H19 is postnatally repressed in most tissues, and re-expressed in many cancers, including hepatocellular carcinoma (HCC). The role of H19 in carcinogenesis is a subject of controversy. We aimed to examine the role of H19 in chronic inflammation-mediated hepatocarcinogenesis using the Mdr2/Abcb4 knockout (Mdr2-KO) mouse, a well-established HCC model. For this goal, we have generated Mdr2-KO/H19-KO double knockout (dKO) mice and followed spontaneous tumor development in the dKO and control Mdr2-KO mice. Cellular localization of H19 and effects of H19 loss in the liver were determined in young and old Mdr2-KO mice. Tumor incidence and tumor load were both significantly decreased in the liver of dKO versus Mdr2-KO females. The expression levels of H19 and Igf2 were variable in nontumor liver tissues of Mdr2-KO females and were significantly downregulated in most matched tumors. In nontumor liver tissue of aged Mdr2-KO females, H19 was expressed mainly in hepatocytes, and hepatocyte proliferation was increased compared to dKO females. At an early age, dKO females displayed lower levels of liver injury and B-cell infiltration, with higher percentage of binuclear hepatocytes. In human samples, H19 expression was higher in females, positively correlated with cirrhosis (in nontumor liver samples) and negatively correlated with CTNNB1 (beta-catenin) mutations and patients' survival (in tumors). Our data demonstrate that the lncRNA H19 is pro-oncogenic during the development of chronic inflammation-mediated HCC in the Mdr2-KO mouse model, mainly by increasing liver injury and decreasing hepatocyte polyploidy in young mice.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinoma Hepatocelular/patologia , Fibrose/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , beta Catenina/genética , Animais , Carcinoma Hepatocelular/genética , Feminino , Fibrose/complicações , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais , Carga Tumoral , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
19.
Cell Rep ; 32(7): 108043, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814046

RESUMO

The islets of Langerhans are dynamic structures that can change in size, number of cells, and molecular function in response to physiological and pathological stress. Molecular cues originating from the surrounding "peri-islet" acinar cells that could facilitate this plasticity have not been explored. Here, we combine single-molecule transcript imaging in the intact pancreas and transcriptomics to identify spatial heterogeneity of acinar cell gene expression. We find that peri-islet acinar cells exhibit a distinct molecular signature in db/db diabetic mice that includes upregulation of trypsin family genes and elevated mTOR activity. This zonated expression program seems to be induced by CCK that is secreted from islet cells. Elevated peri-islet trypsin secretion could facilitate the islet expansion observed in this model via modulation of the islet capsule matrix components. Our study highlights a molecular axis of communication between the pancreatic exocrine and endocrine compartments that may be relevant to islet expansion.


Assuntos
Células Acinares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Pâncreas/metabolismo , Animais , Camundongos
20.
Nat Commun ; 11(1): 1936, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321913

RESUMO

The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Enterócitos/citologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Células Estromais/metabolismo , Proteína Wnt-5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA