Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Blood ; 137(6): 775-787, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881992

RESUMO

Hematopoietic and nervous systems are linked via innervation of bone marrow (BM) niche cells. Hematopoietic stem/progenitor cells (HSPCs) express neurotransmitter receptors, such as the γ-aminobutyric acid (GABA) type B receptor subunit 1 (GABBR1), suggesting that HSPCs could be directly regulated by neurotransmitters like GABA that directly bind to GABBR1. We performed imaging mass spectrometry and found that the endogenous GABA molecule is regionally localized and concentrated near the endosteum of the BM niche. To better understand the role of GABBR1 in regulating HSPCs, we generated a constitutive Gabbr1-knockout mouse model. Analysis revealed that HSPC numbers were significantly reduced in the BM compared with wild-type littermates. Moreover, Gabbr1-null hematopoietic stem cells had diminished capacity to reconstitute irradiated recipients in a competitive transplantation model. Gabbr1-null HSPCs were less proliferative under steady-state conditions and upon stress. Colony-forming unit assays demonstrated that almost all Gabbr1-null HSPCs were in a slow or noncycling state. In vitro differentiation of Gabbr1-null HSPCs in cocultures produced fewer overall cell numbers with significant defects in differentiation and expansion of the B-cell lineage. To determine whether a GABBR1 agonist could stimulate human umbilical cord blood (UCB) HSPCs, we performed brief ex vivo treatment prior to transplant into immunodeficient mice, with significant increases in long-term engraftment of HSPCs compared with GABBR1 antagonist or vehicle treatments. Our results indicate a direct role for GABBR1 in HSPC proliferation, and identify a potential target to improve HSPC engraftment in clinical transplantation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Receptores de GABA-B/fisiologia , Animais , Linfócitos B/patologia , Baclofeno/análogos & derivados , Baclofeno/farmacologia , Medula Óssea/inervação , Medula Óssea/metabolismo , Transplante de Medula Óssea , Divisão Celular , Linhagem da Célula , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Linfopenia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Quimera por Radiação , Receptores de GABA-B/deficiência , Receptores de GABA-B/genética , Nicho de Células-Tronco
2.
J Pharmacol Exp Ther ; 359(2): 300-309, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27608656

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially debilitating side effect of a number of chemotherapeutic agents. There are currently no U.S. Food and Drug Administration-approved interventions or prevention strategies for CIPN. Although the cellular mechanisms mediating CIPN remain to be determined, several lines of evidence support the notion that DNA damage caused by anticancer therapies could contribute to the neuropathy. DNA damage in sensory neurons after chemotherapy correlates with symptoms of CIPN. Augmenting apurinic/apyrimidinic endonuclease (APE)-1 function in the base excision repair pathway reverses this damage and the neurotoxicity caused by anticancer therapies. This neuronal protection is accomplished by either overexpressing APE1 or by using a first-generation targeted APE1 small molecule, E3330 [(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)methylene]-undecanoic acid; also called APX3330]. Although E3330 has been approved for phase 1 clinical trials (Investigational New Drug application number IND125360), we synthesized novel, second-generation APE1-targeted molecules and determined whether they would be protective against neurotoxicity induced by cisplatin or oxaliplatin while not diminishing the platins' antitumor effect. We measured various endpoints of neurotoxicity using our ex vivo model of sensory neurons in culture, and we determined that APX2009 [(2E)-2-[(3-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methylidene]-N,N-diethylpentanamide] is an effective small molecule that is neuroprotective against cisplatin and oxaliplatin-induced toxicity. APX2009 also demonstrated a strong tumor cell killing effect in tumor cells and the enhanced tumor cell killing was further substantiated in a more robust three-dimensional pancreatic tumor model. Together, these data suggest that the second-generation compound APX2009 is effective in preventing or reversing platinum-induced CIPN while not affecting the anticancer activity of platins.


Assuntos
Antineoplásicos/efeitos adversos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Sistema Enzimático do Citocromo P-450/metabolismo , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Conformação Molecular , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Doenças do Sistema Nervoso Periférico/enzimologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia
3.
Bioorg Med Chem Lett ; 23(24): 6874-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24183537

RESUMO

Using an innovative approach toward multiple carbon-carbon bond-formations that relies on the multifaceted catalytic properties of titanocene complexes we constructed a series of C1-C7 analogs of curcumin for evaluation as brain and peripheral nervous system anti-cancer agents. C2-Arylated analogs proved efficacious against neuroblastoma (SK-N-SH & SK-N-FI) and glioblastoma multiforme (U87MG) cell lines. Similar inhibitory activity was also evident in p53 knockdown U87MG GBM cells. Furthermore, lead compounds showed limited growth inhibition in vitro against normal primary human CD34+hematopoietic progenitor cells. Taken together, the present findings indicate that these curcumin analogs are viable lead compounds for the development of new central and peripheral nervous system cancer chemotherapeutics with the potential for little effects on normal hematopoietic progenitor cells.


Assuntos
Antineoplásicos/síntese química , Curcumina/análogos & derivados , Desenho de Fármacos , Antineoplásicos/química , Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/síntese química , Curcumina/toxicidade , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Transplant Cell Ther ; 29(2): 95.e1-95.e10, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36402456

RESUMO

Despite the readily available graft sources for allogeneic hematopoietic cell transplantation (alloHCT), a significant unmet need remains in the timely provision of suitable unrelated donor grafts. This shortage is related to the rarity of certain HLA alleles in the donor pool, nonclearance of donors owing to infectious disease or general health status, and prolonged graft procurement and processing times. An alternative hematopoietic progenitor cell (HPC) graft source obtained from the vertebral bodies (VBs) of deceased organ donors could alleviate many of the obstacles associated with using grafts from healthy living donors or umbilical cord blood (UCB). Deceased organ donor-derived bone marrow (BM) can be preemptively screened, cryogenically banked for on-demand use, and made available in adequate cell doses for HCT. We have developed a good manufacturing practice (GMP)-compliant process to recover and cryogenically bank VB-derived HPCs from deceased organ donor (OD) BM. Here we present results from an analysis of HPCs from BM obtained from 250 deceased donors to identify any substantial difference in composition or quality compared with HPCs from BM aspirated from the iliac crests of healthy living donors. BM from deceased donor VBs was processed in a central GMP facility and packaged for cryopreservation in 5% DMSO/2.5% human serum albumin. BM aspirated from living donor iliac crests was obtained and used for comparison. A portion of each specimen was analyzed before and after cryopreservation by flow cytometry and colony-forming unit potential. Bone marrow chimerism potential was assessed in irradiated immunocompromised NSG mice. Analysis of variance with Bonferroni correction for multiple comparisons was used to determine how cryopreservation affects BM cells and to evaluate indicators of successful engraftment of BM cells into irradiated murine models. The t test (with 95% confidence intervals [CIs]) was used to compare cells from deceased donors and living donors. A final dataset of complete clinical and matched laboratory data from 226 cryopreserved samples was used in linear regressions to predict outcomes of BM HPC processing. When compared before and after cryopreservation, OD-derived BM HPCs were found to be stable, with CD34+ cells maintaining high viability and function after thawing. The yield from a single donor is sufficient for transplantation of an average of 1.6 patients (range, 1.2 to 7.5). CD34+ cells from OD-derived HPCs from BM productively engrafted sublethally irradiated immunocompromised mouse BM (>44% and >67% chimerism at 8 and 16 weeks, respectively). Flow cytometry and secondary transplantation confirmed that OD HPCs from BM is composed of long-term engrafting CD34+CD38-CD45RA-CD90+CD49f+ HSCs. Linear regression identified no meaningful predictive associations between selected donor-related characteristics and OD BM HPC quality or yield. Collectively, these data demonstrate that cryopreserved BM HPCs from deceased organ donors is potent and functionally equivalent to living donor BM HPCs and is a viable on-demand graft source for clinical HCT. Prospective clinical trials will soon commence in collaboration with the Center for International Blood and Marrow Research to assess the feasibility, safety, and efficacy of Ossium HPCs from BM (ClinicalTrials.gov identifier NCT05068401).


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Estudos Prospectivos , Transplante de Células-Tronco Hematopoéticas/métodos , Criopreservação/métodos , Doadores Vivos
5.
Sci Rep ; 13(1): 9163, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280243

RESUMO

Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Criança , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Xenoenxertos , Fosfatidilinositol 3-Quinases/genética , Proteômica , Recidiva Local de Neoplasia/patologia , Astrocitoma/patologia , Glioma/patologia , Mutação , Aberrações Cromossômicas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892870

RESUMO

Despite improved therapeutic and clinical outcomes for patients with localized diseases, outcomes for pediatric and AYA sarcoma patients with high-grade or aggressive disease are still relatively poor. With advancements in next generation sequencing (NGS), precision medicine now provides a strategy to improve outcomes in patients with aggressive disease by identifying biomarkers of therapeutic sensitivity or resistance. The integration of NGS into clinical decision making not only increases the accuracy of diagnosis and prognosis, but also has the potential to identify effective and less toxic therapies for pediatric and AYA sarcomas. Genome and transcriptome profiling have detected dysregulation of the CDK4/6 cell cycle regulatory pathway in subpopulations of pediatric and AYA OS, RMS, and EWS. In these patients, the inhibition of CDK4/6 represents a promising precision medicine-guided therapy. There is a critical need, however, to identify novel and promising combination therapies to fight the development of resistance to CDK4/6 inhibition. In this review, we offer rationale and perspective on the promise and challenges of this therapeutic approach.

7.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612255

RESUMO

Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.

8.
ACS Chem Biol ; 15(6): 1424-1444, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32243127

RESUMO

Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor's RNA sequence and mutation data along with cellular protein-protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including 1 (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC50 values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC50 values, and (iii) had no effect on primary hematopoietic CD34+ progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for 1, and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of 1 to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Transcriptoma/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Cancers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859084

RESUMO

Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.

10.
J Pharmacol Exp Ther ; 330(2): 423-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423841

RESUMO

P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 (MDR) cells and in parental wild-type cells. The MDR cells, transduced with the human Pgp-encoding gene MDR1 construct, were approximately 8-fold more resistant to mitoxantrone than the wild-type cells. Mitoxantrone accumulation in the MDR cells was 3-fold lower than that in the wild-type cells. The net uptake of mitoxantrone in the nuclei and cytoplasm of MDR cells was only 58 and 67% of that in the same intracellular compartment of the wild-type cells. Pretreatment with PSC833 increased the accumulation of mitoxantrone in the MDR cells to 85% of that in the wild-type cells. In living animals, the accumulation of mitoxantrone in MDA-MB-435mdr xenograft tumors was 61% of that in the wild-type tumors. Administration of PSC833 to animals before mitoxantrone treatment increased the accumulation of mitoxantrone in the MDR tumors to 94% of that in the wild-type tumors. These studies have added direct in vitro and in vivo visual information on how Pgp processes anticancer compounds and how Pgp inhibitors modulate MDR in resistant cancer cells.


Assuntos
Ciclosporinas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitoxantrona/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Ciclosporinas/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Camundongos , Camundongos Nus , Mitoxantrona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Exp Hematol ; 36(3): 283-92, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18279716

RESUMO

OBJECTIVE: Using a clinically relevant transduction strategy, we investigated to what extent hematopoietic stem cells in lineage-negative bone marrow (Lin(neg) BM) could be genetically modified with an foamy virus (FV) vector that expresses the DNA repair protein, O(6)-methylguanine DNA methyltransferase (MGMT(P140K)) and selected in vivo with submyeloablative or myeloablative alkylator therapy. MATERIALS AND METHODS: Lin(neg) BM was transduced at a low multiplicity-of-infection with the FV vector, MD9-P140K, which coexpresses MGMT(P140K) and the enhanced green fluorescent protein, transplanted into C57BL/6 mice, and mice treated with submyeloablative or myeloablative alkylator therapy. The BM was analyzed for the presence of in vivo selected, MD9-P140K-transduced cells at 6 months post-transplantation and subsequently transplanted into secondary recipient animals. RESULTS: Following submyeloablative therapy, 55% of the mice expressed MGMT(P140K) in the BM. Proviral integration was observed in approximately 50% of committed BM-derived progenitors and analysis of proviral insertion sites indicated up to two integrations per transduced progenitor colony. Transduced BM cells selected with submyeloablative therapy reconstituted secondary recipient mice for up to 6 months post-transplantation. In contrast, after delivery of myeloablative therapy to primary recipient mice, only 25% survived. Hematopoietic stem cells were transduced because BM cells from the surviving animals reconstituted secondary recipients with MGMT(P140K)-positive cells for 5 to 6 months. CONCLUSIONS: In vivo selection of MD9-P140K-transduced BM cells was more efficient following submyeloablative than myeloablative therapy. These data indicate that a critical number of transduced stem cells must be present to produce sufficient numbers of genetically modified progeny to protect against acute toxicity associated with myeloablative therapy.


Assuntos
Células da Medula Óssea/fisiologia , Células da Medula Óssea/virologia , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas/métodos , O(6)-Metilguanina-DNA Metiltransferase/genética , Vírus Espumoso dos Símios/enzimologia , Animais , Células da Medula Óssea/citologia , Linhagem da Célula/genética , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos C57BL , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Reação em Cadeia da Polimerase , Infecções por Retroviridae/virologia , Vírus Espumoso dos Símios/genética
12.
Cell Chem Biol ; 26(3): 378-389.e13, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30581134

RESUMO

The Hippo pathway coordinates extracellular signals onto the control of tissue homeostasis and organ size. Hippo signaling primarily regulates the ability of Yap1 to bind and co-activate TEA domain (TEAD) transcription factors. Yap1 tightly binds to TEAD4 via a large flat interface, making the development of small-molecule orthosteric inhibitors highly challenging. Here, we report small-molecule TEAD⋅Yap inhibitors that rapidly and selectively form a covalent bond with a conserved cysteine located within the unique deep hydrophobic palmitate-binding pocket of TEADs. Inhibition of TEAD4 binding to Yap1 by these compounds was irreversible and occurred on a longer time scale. In mammalian cells, the compounds formed a covalent complex with TEAD4, inhibited its binding to Yap1, blocked its transcriptional activity, and suppressed expression of connective tissue growth factor. The compounds inhibited cell viability of patient-derived glioblastoma spheroids, making them suitable as chemical probes to explore Hippo signaling in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cisteína/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Simulação de Dinâmica Molecular , Proteínas Musculares/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Fatores de Transcrição de Domínio TEA , Termodinâmica , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Sinalização YAP
13.
J Neurosurg ; 126(2): 446-459, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27177180

RESUMO

OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imidazóis/uso terapêutico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/patologia , Terapia Combinada , Modelos Animais de Doenças , Glioblastoma/patologia , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cancer Ther ; 2(12): 1321-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14707273

RESUMO

The major mechanism of tumor cell resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is the DNA repair protein O(6)-methylguanine DNA methyltransferase (MGMT). This repair system can be temporarily inhibited by the free base O(6)-benzylguanine (BG), which depletes cellular MGMT activity and sensitizes tumor cells and xenografts to BCNU. In clinical studies, the combination of BG and BCNU enhanced the myeloid toxicity of BCNU, thereby reducing the maximum tolerated dose. We have shown previously that retroviral expression of the P140K mutant of MGMT (MGMT-P140K) in murine and human hematopoietic cells produces significant resistance of bone marrow cells to low-dose, combination BG and BCNU treatment in vivo. In the current study, we investigated the ability of bone marrow transplantation with MGMT-P140K-transduced hematopoietic cells to protect against an intensive antitumor treatment regimen of combination BG and BCNU in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The donor marrow cells underwent in vivo BG and BCNU selection before transplantation, allowing infusion of a highly selected population of transduced cells. Tolerance to the intensive BG and BCNU treatment was markedly improved in secondary MGMT-P140K-transplanted mice (n = 19) compared to untransplanted mice (n = 15), as indicated by blood counts and survival rate. The dose-intensified BG and BCNU therapy produced significant growth delays of glioma xenografts in MGMT-P140K-transplanted mice, extending the tumor doubling time by >40 days. These results demonstrate that MGMT-P140K-transduced bone marrow protects against BG and BCNU combination therapy in vivo and allows dose-intensified treatment of tumor xenografts.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Medula Óssea/enzimologia , Neoplasias Encefálicas/tratamento farmacológico , Carmustina/uso terapêutico , Glioma/tratamento farmacológico , Guanina/análogos & derivados , Guanina/uso terapêutico , O(6)-Metilguanina-DNA Metiltransferase/genética , Animais , Antineoplásicos Alquilantes/farmacologia , Carmustina/farmacologia , Guanina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Transdução Genética , Transplante Heterólogo
15.
Mol Cancer Ther ; 14(12): 2850-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494859

RESUMO

Triple-negative breast cancers (TNBC) are typically resistant to treatment, and strategies that build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is an attractive approach, as Mdm2 levels are elevated in many therapy-refractive breast cancers. The Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling molecules such as p53 and p73α and can result in activation of cell death signaling pathways. In the present study, the therapeutic potential of carboplatin and Nutlin-3a to treat TNBC was investigated, as carboplatin is under evaluation in clinical trials for TNBC. In mutant p53 TMD231 TNBC cells, carboplatin and Nutlin-3a led to increased Mdm2 and was strongly synergistic in promoting cell death in vitro. Furthermore, sensitivity of TNBC cells to combination treatment was dependent on p73α. Following combination treatment, γH2AX increased and Mdm2 localized to a larger degree to chromatin compared with single-agent treatment, consistent with previous observations that Mdm2 binds to the Mre11/Rad50/Nbs1 complex associated with DNA and inhibits the DNA damage response. In vivo efficacy studies were conducted in the TMD231 orthotopic mammary fat pad model in NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. Using an intermittent dosing schedule of combined carboplatin and Nutlin-3a, there was a significant reduction in primary tumor growth and lung metastases compared with vehicle and single-agent treatments. In addition, there was minimal toxicity to the bone marrow and normal tissues. These studies demonstrate that Mdm2 holds promise as a therapeutic target in combination with conventional therapy and may lead to new clinical therapies for TNBC.


Assuntos
Imidazóis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/administração & dosagem , Proteínas Proto-Oncogênicas c-mdm2/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Animais , Carboplatina/administração & dosagem , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Ensaios Clínicos como Assunto , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Histonas/biossíntese , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Metástase Neoplásica , Proteínas Nucleares/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
16.
Hum Gene Ther ; 14(18): 1703-14, 2003 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-14670122

RESUMO

Strategies that increase the ability of human hematopoietic stem and progenitor cells to repair alkylator-induced DNA damage may prevent the severe hematopoietic toxicity in patients with cancer undergoing high-dose alkylator therapy. In the context of genetic diseases, this approach may allow for selection of small numbers of cells that would not otherwise have a favorable growth advantage. No studies have tested this approach in vivo using human hematopoietic stem and progenitor cells. Human CD34(+) cells were transduced with a bicistronic oncoretrovirus vector that coexpresses a mutant form of O(6)-methylguanine DNA methyltransferase (MGMT(P140K)) and the enhanced green fluorescent protein (EGFP) and transplanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Mice were either not treated or treated with O(6)-benzylguanine (6BG) and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). At 8-weeks postinjection, a 2- to 8-fold increase in the percentage of human CD45(+)EGFP(+) cells in 6BG/BCNU-treated versus nontreated mice was observed in the bone marrow and was associated with increased MGMT(P140K)-repair activity. Functionally, 6BG/BCNU-treated mice demonstrated multilineage differentiation in vivo, although some skewing in the maturation of myeloid and B cells was observed in mice transplanted with granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood compared to umbilical cord blood. Expansion of human cells in 6BG/BCNU-treated mice was observed in the majority of mice previously transplanted with transduced umbilical cord blood cells. In addition, a significant increase in the number of EGFP(+) progenitor colonies in treated versus nontreated mice were observed in highly engrafted mice indicating that selection and maintenance of human progenitor cells can be accomplished by expression of MGMT(P140K) and treatment with 6BG/BCNU.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Carmustina/efeitos adversos , Diferenciação Celular , Dano ao DNA , Metilases de Modificação do DNA/genética , Reparo do DNA , Células-Tronco Hematopoéticas/imunologia , Animais , Antígenos CD34 , Divisão Celular , Feminino , Terapia Genética/métodos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Seleção Genética , Transdução Genética , Transplante Heterólogo
17.
PLoS One ; 9(6): e99036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901248

RESUMO

Genomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux ([Formula: see text]) through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial development of xenografts in the living eye. We engineered Y79 retinoblastoma cells to express a lentivirally-delivered enhanced green fluorescent protein-luciferase fusion protein. In intravitreal xenografts, we assayed bioluminescence and computed [Formula: see text], as well as documented tumor growth by intraocular optical coherence tomography (OCT), brightfield, and fluorescence imaging. In vivo bioluminescence, ex vivo tumor size, and ex vivo fluorescent signal were all highly correlated in orthotopic xenografts. By OCT, xenografts were dense and highly vascularized, with well-defined edges. Small tumors preferentially sat atop the optic nerve head; this morphology was confirmed on histological examination. In vivo, [Formula: see text] in xenografts showed a plateau effect as tumors became bounded by the dimensions of the eye. The combination of [Formula: see text] modeling and in vivo intraocular imaging allows both quantitative and high-resolution, non-invasive spatial analysis of this retinoblastoma model. This technique will be applied to other cell lines and experimental therapeutic trials in the future.


Assuntos
Neoplasias Oculares/patologia , Retinoblastoma/patologia , Animais , Linhagem Celular Tumoral , Neoplasias Oculares/diagnóstico por imagem , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Medições Luminescentes , Radiografia , Ratos , Retinoblastoma/diagnóstico por imagem , Tomografia de Coerência Óptica , Transplante Heterólogo
18.
Clin Cancer Res ; 19(10): 2699-709, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23536437

RESUMO

PURPOSE: An understanding of how hematopoietic cells respond to therapy that causes myelosuppression will help develop approaches to prevent this potentially life-threatening toxicity. The goal of this study was to determine how human myeloid precursor cells respond to temozolomide (TMZ)-induced DNA damage. EXPERIMENTAL DESIGN: We developed an ex vivo primary human myeloid precursor cells model system to investigate the involvement of cell-death pathways using a known myelosuppressive regimen of O(6)-benzylguanine (6BG) and TMZ. RESULTS: Exposure to 6BG/TMZ led to increases in p53, p21, γ-H2AX, and mitochondrial DNA damage. Increases in mitochondrial membrane depolarization correlated with increased caspase-9 and -3 activities following 6BG/TMZ treatment. These events correlated with decreases in activated AKT, downregulation of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), and increased cell death. During myeloid precursor cell expansion, FAS/CD95/APO1(FAS) expression increased over time and was present on approximately 100% of the cells following exposure to 6BG/TMZ. Although c-flipshort, an endogenous inhibitor of FAS-mediated signaling, was decreased in 6BG/TMZ-treated versus control, 6BG-, or TMZ alone-treated cells, there were no changes in caspase-8 activity. In addition, there were no changes in the extent of cell death in myeloid precursor cells exposed to 6BG/TMZ in the presence of neutralizing or agonistic anti-FAS antibodies, indicating that FAS-mediated signaling was not operative. CONCLUSIONS: In human myeloid precursor cells, 6BG/TMZ-initiated apoptosis occurred by intrinsic, mitochondrial-mediated and not extrinsic, FAS-mediated apoptosis. Human myeloid precursor cells represent a clinically relevant model system for gaining insight into how hematopoietic cells respond to chemotherapeutics and offer an approach for selecting effective chemotherapeutic regimens with limited hematopoietic toxicity.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Células Progenitoras Mieloides/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , DNA Mitocondrial/genética , Dacarbazina/farmacologia , Perfilação da Expressão Gênica , Guanina/análogos & derivados , Guanina/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Progenitoras Mieloides/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Temozolomida , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
19.
Bioorg Med Chem ; 13(20): 5779-86, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15993610

RESUMO

A novel fluorine-18-labeled O6-benzylguanine (O6-BG) derivative, O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine (O6-[18F]FEMBG, [18F]1), has been synthesized for evaluation as a potential positron emission tomography (PET) probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cancer chemotherapy. The appropriate radiolabeling precursor N(2,9)-bis(p-anisyldiphenylmethyl)-O6-[4-(hydroxymethyl)benzyl]guanine (6) and reference standard O6-[4-(2-fluoroethoxymethyl)benzyl]guanine (O6-FEMBG, 1) were synthesized from 1,4-benzenedimethanol and 2-amino-6-chloropurine in four or six steps, respectively, with moderate to excellent chemical yields. The target tracer O6-[18F]FEMBG was prepared in 20-35% radiochemical yields by reaction of MTr-protected precursor 6 with [18F]fluoroethyl bromide followed by quick deprotection reaction and purification with a simplified Silica Sep-Pak method. Total synthesis time was 60-70 min from the end of bombardment. Radiochemical purity of the formulated product was >95%, with a specific radioactivity of >1.0 Ci/micromol at the end of synthesis. The activity of unlabeled O6-FEMBG was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate that the synthesized analogue has similarly strong inhibiting effect on AGT in comparison with O6-BG and O6-4-fluorobenzylguanine (O6-FBG). The results warrant further in vivo evaluation of O6-[18F]FEMBG as a new potential PET probe for AGT.


Assuntos
Antineoplásicos/farmacologia , Guanina/análogos & derivados , Sondas Moleculares , O(6)-Metilguanina-DNA Metiltransferase/química , Tomografia por Emissão de Pósitrons , Cromatografia Líquida de Alta Pressão , Guanina/síntese química , Guanina/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA