Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846159

RESUMO

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromossomos/metabolismo , Ciprofloxacina/farmacologia , DNA/genética , Replicação do DNA/efeitos dos fármacos , Endonucleases/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Recombinantes , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Imagem Individual de Molécula , Espectrometria de Massas em Tandem , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento , Thermus thermophilus/ultraestrutura , Inibidores da Topoisomerase II/farmacologia
2.
Nature ; 619(7969): 394-402, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344600

RESUMO

In eukaryotes, small RNA guides, such as small interfering RNAs and microRNAs, direct AGO-clade Argonaute proteins to regulate gene expression and defend the genome against external threats. Only animals make a second clade of Argonaute proteins: PIWI proteins. PIWI proteins use PIWI-interacting RNAs (piRNAs) to repress complementary transposon transcripts1,2. In theory, transposons could evade silencing through target site mutations that reduce piRNA complementarity. Here we report that, unlike AGO proteins, PIWI proteins efficiently cleave transcripts that are only partially paired to their piRNA guides. Examination of target binding and cleavage by mouse and sponge PIWI proteins revealed that PIWI slicing tolerates mismatches to any target nucleotide, including those flanking the scissile phosphate. Even canonical seed pairing is dispensable for PIWI binding or cleavage, unlike plant and animal AGOs, which require uninterrupted target pairing from the seed to the nucleotides past the scissile bond3,4. PIWI proteins are therefore better equipped than AGO proteins to target newly acquired or rapidly diverging endogenous transposons without recourse to new small RNA guides. Conversely, the minimum requirements for PIWI slicing are sufficient to avoid inadvertent silencing of host RNAs. Our results demonstrate the biological advantage of PIWI over AGO proteins in defending the genome against transposons and suggest an explanation for why the piRNA pathway was retained in animal evolution.


Assuntos
Proteínas Argonautas , Elementos de DNA Transponíveis , Inativação Gênica , RNA de Interação com Piwi , Animais , Camundongos , Proteínas Argonautas/classificação , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , RNA de Interação com Piwi/genética , RNA de Interação com Piwi/metabolismo , Evolução Molecular , Fosfatos/metabolismo , Especificidade por Substrato
3.
Nature ; 608(7923): 618-625, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772669

RESUMO

Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins have diverse biological functions and many retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, the PIWI proteins-a specialized class of Argonaute proteins-use 21-35 nucleotide PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalysed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2) and MIWI22-4 (PIWIL4). The piRNA-guided endoribonuclease activities of MIWI and MILI are essential for the production of functional sperm5,6. piRNA-directed silencing in mice and insects also requires GTSF1, a PIWI-associated protein of unknown function7-12. Here we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 is thus an example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.


Assuntos
Proteínas Argonautas , Peptídeos e Proteínas de Sinalização Intracelular , Clivagem do RNA , RNA Interferente Pequeno , Animais , Proteínas Argonautas/classificação , Proteínas Argonautas/metabolismo , Biocatálise , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , RNA Interferente Pequeno/metabolismo
4.
Med Teach ; : 1-3, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350461

RESUMO

What was the educational challenge?There is a growing need for healthcare simulation options when local expertise or resources are not available. To connect instructors with remote learners, current options for distance simulation are typically limited to videoconferencing on desktop computers or mobile devices, which may not fully capture the complexity of clinical scenarios.What was the solution?Extended reality (XR) technology may provide a more immersive and realistic distance healthcare simulation experience compared to traditional videoconferencing options. Unlike computer- or phone-based video calls, stereoscopic video in XR provides a sense of depth that may increase spatial understanding and engagement in distance simulation.How was the solution implemented?We investigated the impact of XR for synchronous distance simulation compared to traditional desktop-based videoconferencing in Emergency Medicine (EM) resident training for an obstetrical emergency. A randomized controlled experiment was conducted with half of the residents using XR and half using computers to participate in the simulation.What lessons were learned that are relevant to a wider global audience?There was an unanticipated interaction between postgraduate year and condition such that performance in the XR condition was superior for first year residents, while this was reversed for more experienced residents. This indicates that the benefits of XR might be dependent on participant characteristics, such as learner level.What are the next steps?We plan to extend this research to clarify characteristics of learners and tasks that are important determinants of differences in outcomes between stereoscopic XR versus traditional videoconference displays.

5.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R960-R971, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881363

RESUMO

The liver plays a central role that influences cardiovascular disease outcomes through regulation of glucose and lipid metabolism. It is recognized that the local liver molecular clock regulates some liver-derived metabolites. However, it is unknown whether the liver clock may impact cardiovascular function. Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue surrounding blood vessels. Importantly, cross talk between the endothelium and PVAT via vasoactive factors is critical for vascular function. Therefore, we designed studies to test the hypothesis that cardiovascular function, including PVAT function, is impaired in mice with liver-specific circadian clock disruption. Bmal1 is a core circadian clock gene, thus studies were undertaken in male hepatocyte-specific Bmal1 knockout (HBK) mice and littermate controls (i.e., flox mice). HBK mice showed significantly elevated plasma levels of ß-hydroxybutyrate, nonesterified fatty acids/free fatty acids, triglycerides, and insulin-like growth factor 1 compared with flox mice. Thoracic aorta PVAT in HBK mice had increased mRNA expression of several key regulatory and metabolic genes, Ppargc1a, Pparg, Adipoq, Lpl, and Ucp1, suggesting altered PVAT energy metabolism and thermogenesis. Sensitivity to acetylcholine-induced vasorelaxation was significantly decreased in the aortae of HBK mice with PVAT attached compared with aortae of HBK mice with PVAT removed, however, aortic vasorelaxation in flox mice showed no differences with or without attached PVAT. HBK mice had a significantly lower systolic blood pressure during the inactive period of the day. These new findings establish a novel role of the liver circadian clock in regulating PVAT metabolic gene expression and PVAT-mediated aortic vascular function.


Assuntos
Tecido Adiposo/metabolismo , Relógios Circadianos/fisiologia , Hepatócitos/metabolismo , Fígado/fisiologia , Animais , Pressão Sanguínea/fisiologia , Expressão Gênica/fisiologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
6.
J Hepatol ; 71(1): 200-211, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30930223

RESUMO

Each day, all organisms are subjected to changes in light intensity because of the Earth's rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The 'clock' is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g. travel and jet lag, night and rotating shift work), which force 'circadian misalignment', have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease.


Assuntos
Relógios Circadianos/fisiologia , Hepatopatias/fisiopatologia , Fígado/fisiologia , Ritmo Circadiano , Humanos
7.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G364-G373, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848023

RESUMO

The detrimental health effects of excessive alcohol consumption are well documented. Alcohol-induced liver disease (ALD) is the leading cause of death from chronic alcohol use. As with many diseases, the etiology of ALD is influenced by how the liver responds to other secondary insults. The molecular circadian clock is an intrinsic cellular timing system that helps organisms adapt and synchronize metabolism to changes in their environment. The clock also influences how tissues respond to toxic, environmental, and metabolic stressors, like alcohol. Consistent with the essential role for clocks in maintaining health, genetic and environmental disruption of the circadian clock contributes to disease. While a large amount of rich literature is available showing that alcohol disrupts circadian-driven behaviors and that circadian clock disruption increases alcohol drinking and preference, very little is known about the role circadian clocks play in alcohol-induced tissue injuries. In this review, recent studies examining the effect alcohol has on the circadian clock in peripheral tissues (liver and intestine) and the impact circadian clock disruption has on development of ALD are presented. This review also highlights some of the rhythmic metabolic processes in the liver that are disrupted by alcohol and potential mechanisms through which alcohol disrupts the liver clock. Improved understanding of the mechanistic links between the circadian clock and alcohol will hopefully lead to the development of new therapeutic approaches for treating ALD and other alcohol-related organ pathologies.


Assuntos
Relógios Circadianos/fisiologia , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Ritmo Circadiano/fisiologia , Humanos
8.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G431-G447, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191941

RESUMO

Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Consumo de Bebidas Alcoólicas/metabolismo , Ritmo Circadiano , Deleção de Genes , Glicogênio/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Fatores de Transcrição ARNTL/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Hepatócitos/patologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Knockout , Fenótipo , Fatores de Tempo
9.
Blood ; 127(21): 2587-97, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-26907633

RESUMO

Multiple myeloma (MM) cell lines and primary tumor cells are addicted to the MYC oncoprotein for survival. Little is known, however, about how MYC expression is upregulated in MM cells. The mucin 1 C-terminal subunit (MUC1-C) is an oncogenic transmembrane protein that is aberrantly expressed in MM cell lines and primary tumor samples. The present studies demonstrate that targeting MUC1-C with silencing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 editing or with the GO-203 inhibitor is associated with downregulation of MYC messenger RNA and protein. The results show that MUC1-C occupies the MYC promoter and thereby activates the MYC gene by a ß-catenin/transcription factor 4 (TCF4)-mediated mechanism. In this way, MUC1-C (1) increases ß-catenin occupancy on the MYC promoter, (2) forms a complex with ß-catenin and TCF4, and, in turn, (3) drives MYC transcription. Analysis of MM cells using quantitative real-time reverse transcription polymerase chain reaction arrays further demonstrated that silencing MUC1-C is associated with downregulation of MYC target genes, including CCND2, hTERT, and GCLC Analysis of microarray data sets further demonstrated that MUC1 levels positively correlate with MYC expression in MM progression and in primary cells from over 800 MM patients. These findings collectively provide convincing evidence that MUC1-C drives MYC expression in MM.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Mucina-1/biossíntese , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elementos de Resposta , Transcrição Gênica , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Ciclina D2/biossíntese , Ciclina D2/genética , Glutamato-Cisteína Ligase/biossíntese , Glutamato-Cisteína Ligase/genética , Humanos , Mucina-1/genética , Mieloma Múltiplo/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Telomerase/biossíntese , Telomerase/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Cell Commun Signal ; 16(1): 61, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231881

RESUMO

BACKGROUND: Glioblastomas (GBMs), the most common and most lethal of the primary brain tumors, are characterized by marked intra-tumor heterogeneity. Several studies have suggested that within these tumors a restricted population of chemoresistant glioma cells is responsible for recurrence. However, the gene expression patterns underlying chemoresistance are largely unknown. Numerous efforts have been made to block IGF-1R signaling pathway in GBM. However, those therapies have been repeatedly unsuccessful. This failure may not only be due to the complexity of IGF receptor signaling, but also due to complex cell-cell interactions in the tumor mass. We hypothesized that differential expression of proteins in the insulin-like growth factor (IGF) system underlie cell-specific differences in the resistance to temozolomide (TMZ) within GBM tumors. METHODS: Expression of IGF-1R was analyzed in cell lines, patient-derived xenograft cell lines and human biopsies by cell surface proteomics, flow cytometry, immunofluorescence and quantitative real time polymerase chain reaction (qRT-PCR). Using gain-of-function and loss-of-function strategies, we dissected the molecular mechanism responsible for IGF-binding protein 6 (IGFBP6) tumor suppressor functions both in in vitro and in vivo. Site direct mutagenesis was used to study IGFBP6-IGF2 interactions. RESULTS: We determined that in human glioma tissue, glioma cell lines, and patient-derived xenograft cell lines, treatment with TMZ enhances the expression of IGF1 receptor (IGF-1R) and IGF2 and decreases the expression of IGFBP6, which sequesters IGF2. Using chemoresistant and chemosensitive wild-type and transgenic glioma cells, we further found that a paracrine mechanism driven by IGFBP6 secreted from TMZ-sensitive cells abrogates the proliferation of IGF-1R-expressing TMZ-resistant cells in vitro and in vivo. In mice bearing intracranial human glioma xenografts, overexpression of IGFBP6 in TMZ-resistant cells increased survival. Finally, elevated expression of IGF-1R and IGF2 in gliomas associated with poor patient survival and tumor expression levels of IGFBP6 directly correlated with overall survival time in patients with GBM. CONCLUSIONS: Our findings support the view that proliferation of chemoresistant tumor cells is controlled within the tumor mass by IGFBP6-producing tumor cells; however, TMZ treatment eliminates this population and enriches the TMZ-resistant cell populationleading to accelerated growth of the entire tumor mass.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Comunicação Parácrina , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Temozolomida/farmacologia
11.
Gene Expr ; 19(1): 49-60, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30086817

RESUMO

Alcohol-associated liver disease (AALD) is the third most common preventable cause for disease burden and mortality in the US. AALD, including alcoholic hepatitis (AH), contributes to half of admissions from decompensated liver disease and 20% of all liver transplants in the US. Peripheral blood cells contribute to systemic inflammation, oxidative stress, mitochondrial dysfunction, and fibrosis in AALD and AH. Alcohol dysregulates function of lymphocytes, neutrophils, monocytes, and tissue macrophages of the innate immune system. These alterations in turn can modulate adaptive immune responses. In this review, we describe these disruptive effects of alcohol on cells of the innate and adaptive immune system and focus on cellular-based emerging biomarkers on diagnosis and prognosis of patients with AALD and AH.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/fisiopatologia , Imunidade Adaptativa/fisiologia , Transtornos Induzidos por Álcool/metabolismo , Transtornos Induzidos por Álcool/fisiopatologia , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Etanol/efeitos adversos , Hepatite Alcoólica/metabolismo , Humanos , Imunidade Inata/fisiologia , Inflamação/metabolismo , Fígado/metabolismo , Regeneração Hepática/fisiologia , Transplante de Fígado , Estresse Oxidativo/efeitos dos fármacos
12.
Genes Dev ; 24(19): 2219-27, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889718

RESUMO

Estrogen receptor α (ERα) expression in breast cancer is predictive of response to endocrine therapy; however, resistance is common in ERα-positive tumors that overexpress the growth factor receptor ERBB2. Even in the absence of estrogen, ERα can be activated by growth factors, including the epidermal growth factor (EGF). EGF induces a transcriptional program distinct from estrogen; however, the mechanism of the stimulus-specific response is unknown. Here we show that the EGF-induced ERα genomic targets, its cistromes, are distinct from those induced by estrogen in a process dependent on the transcription factor AP-1. The EGF-induced ERα cistrome specifically regulates genes found overexpressed in ERBB2-positive human breast cancers. This provides a potential molecular explanation for the endocrine therapy resistance seen in ERα-positive breast cancers that overexpress ERBB2. These results suggest a central role for ERα in hormone-refractory breast tumors dependent on growth factor pathway activation and favors the development of therapeutic strategies completely antagonizing ERα, as opposed to blocking its estrogen responsiveness alone.


Assuntos
Neoplasias da Mama/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Crescimento Epidérmico/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Feminino , Humanos , Receptor ErbB-2/metabolismo
13.
Hum Factors ; 60(3): 340-350, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29244530

RESUMO

Objective The purpose of the present research is to establish measurement equivalence and test differences in reliability between computerized and pencil-and-paper-based tests of spatial cognition. Background Researchers have increasingly adopted computerized test formats, but few attempt to establish equivalence for computer-based and paper-based tests. The mixed results in the literature on the test mode effect, which occurs when performance differs as a function of test medium, highlight the need to test for, instead of assume, measurement equivalence. One domain that has been increasingly computerized and is thus in need of tests of measurement equivalence across test mode is spatial cognition. Method In the present study, 244 undergraduate students completed two measures of spatial ability (i.e., spatial visualization and cross-sectioning) in either computer- or paper-and-pencil-based format. Results Measurement equivalence was not supported across computer-based and paper-based formats for either spatial test. The results also indicated that test administration type affected the types of errors made on the spatial visualization task, which further highlights the conceptual differences between test mediums. Paper-based tests also demonstrated increased reliability when compared with computerized versions of the tests. Conclusion The results of the measurement equivalence tests caution against treating computer- and paper-based versions of spatial measures as equivalent. We encourage subsequent work to demonstrate test mode equivalence prior to the utilization of spatial measures because current evidence suggests they may not reliably capture the same construct. Application The assessment of test type differences may influence the medium in which spatial cognition tests are administered.


Assuntos
Testes Neuropsicológicos/normas , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Computadores , Humanos , Papel , Reprodutibilidade dos Testes , Adulto Jovem
14.
J Biol Chem ; 291(46): 24188-24199, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679486

RESUMO

The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glioma , Proteínas de Neoplasias/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochim Biophys Acta ; 1861(10): 1579-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26721420

RESUMO

A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Adaptação Fisiológica , Proteínas CLOCK/metabolismo , Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta Hiperlipídica , Comportamento Alimentar , Masculino , Camundongos Mutantes , Contração Miocárdica , Especificidade de Órgãos , Estreptozocina
16.
Am J Physiol Endocrinol Metab ; 311(3): E605-19, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436613

RESUMO

This review summarizes the American Physiological Society (APS) Presidential Symposium 1 entitled "Physiological Processes Underlying Organ Injury in Alcohol Abuse" at the 2016 Experimental Biology meeting. The symposium was organized by Dr. Patricia Molina, past president of the APS, was held on April 3 at the Convention Center in San Diego, CA, and was funded by the National Institute on Alcohol Abuse and Alcoholism. The "Physiological Processes Underlying Organ Injury in Alcohol Abuse Symposium" assembled experts and leaders in the field and served as a platform to discuss and share knowledge on the latest developments and scientific advances on the mechanisms underlying organ injury in alcohol abuse. This symposium provided unique, interdisciplinary alcohol research, including several organs, liver, muscle, adipose, and brain, affected by excessive alcohol use.


Assuntos
Alcoolismo/patologia , Tecido Adiposo/patologia , Animais , Encéfalo/patologia , Endocanabinoides/metabolismo , Humanos , Fígado/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia
17.
Am J Physiol Heart Circ Physiol ; 310(11): H1520-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084392

RESUMO

Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCß, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways.


Assuntos
Biotinilação , Carbono-Carbono Liases/metabolismo , Transtornos Cronobiológicos/metabolismo , Relógios Circadianos , Metabolismo Energético , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Biotina/administração & dosagem , Biotina/metabolismo , Proteínas CLOCK/genética , Carbono-Carbono Ligases/metabolismo , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Relógios Circadianos/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Cardiopatias/genética , Cardiopatias/fisiopatologia , Fígado/metabolismo , Masculino , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Piruvato Carboxilase/metabolismo , Simportadores/metabolismo , Fatores de Tempo
18.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G964-74, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25857999

RESUMO

Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano , Etanol/efeitos adversos , Glicogênio Hepático/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Dieta , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Fosforilase Hepática , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
Med Educ ; 54(5): 485-486, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239526
20.
Biochem J ; 461(2): 223-32, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24758559

RESUMO

NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.


Assuntos
Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Genoma Mitocondrial , Hepatócitos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Núcleo Celular/patologia , Dieta Aterogênica/efeitos adversos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica , Hepatócitos/patologia , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica , Fosforilação Oxidativa , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA