Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
2.
Biochim Biophys Acta ; 1853(7): 1749-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25913012

RESUMO

Recent studies have demonstrated that the actin binding protein, ezrin, and the cAMP-sensor, EPAC1, cooperate to induce cell spreading in response to elevations in intracellular cAMP. To investigate the mechanisms underlying these effects we generated a model of EPAC1-dependent cell spreading based on the stable transfection of EPAC1 into HEK293T (HEK293T-EPAC1) cells. We found that direct activation of EPAC1 with the EPAC-selective analogue, 8-pCPT-2'-O-Me-cAMP (007), promoted cell spreading in these cells. In addition, co-activation of EPAC1 and PKA, with a combination of the adenylate cyclase activator, forskolin, and the cAMP phosphodiesterase inhibitor, rolipram, was found to synergistically enhance cell spreading, in association with cortical actin bundling and mobilisation of ezrin to the plasma membrane. PKA activation was also associated with phosphorylation of ezrin on Thr567, as detected by an electrophoretic band mobility shift during SDS-PAGE. Inhibition of PKA activity blocked ezrin phosphorylation and reduced the cell spreading response to cAMP elevation to levels induced by EPAC1-activation alone. Transfection of HEK293T-EPAC1 cells with inhibitory ezrin mutants lacking the key PKA phosphorylation site, ezrin-Thr567Ala, or the ability to associate with actin, ezrin-Arg579Ala, promoted cell arborisation and blocked the ability of EPAC1 and PKA to further promote cell spreading. The PKA phospho-mimetic mutants of ezrin, ezrin-Thr567Asp had no effect on EPAC1-driven cell spreading. Our results indicate that association of ezrin with the actin cytoskeleton and phosphorylation on Thr567 are required, but not sufficient, for PKA and EPAC1 to synergistically promote cell spreading following elevations in intracellular cAMP.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfotreonina/metabolismo , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Chlorocebus aethiops , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Citoesqueleto/metabolismo , Genes Dominantes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
3.
Bioorg Med Chem Lett ; 26(18): 4403-4407, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27542310

RESUMO

Existing CB1 negative allosteric modulators (NAMs) fall into a limited range of structural classes. In spite of the theoretical potential of CB1 NAMs, published in vivo studies have generally not been able to demonstrate the expected therapeutically-relevant CB1-mediated effects. Thus, a greater range of molecular tools are required to allow definitive elucidation of the effects of CB1 allosteric modulation. In this study, we show a novel series of indole sulfonamides. Compounds 5e and 6c (ABD1075) had potencies of 4 and 3nM respectively, and showed good oral exposure and CNS penetration, making them highly versatile tools for investigating the therapeutic potential of allosteric modulation of the cannabinoid system.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Sulfonamidas/farmacologia , Regulação Alostérica , Humanos
4.
J Biol Chem ; 289(9): 5828-45, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24366865

RESUMO

The cannabinoid 1 (CB1) allosteric modulator, 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide) (ORG27569), has the paradoxical effect of increasing the equilibrium binding of [(3)H](-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl]cyclohexan-1-ol (CP55,940, an orthosteric agonist) while at the same time decreasing its efficacy (in G protein-mediated signaling). ORG27569 also decreases basal signaling, acting as an inverse agonist for the G protein-mediated signaling pathway. In ligand displacement assays, ORG27569 can displace the CB1 antagonist/inverse agonist, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). The goal of this work was to identify the binding site of ORG27569 at CB1. To this end, we used computation, synthesis, mutation, and functional studies to identify the ORG27569-binding site in the CB1 TMH3-6-7 region. This site is consistent with the results of K3.28(192)A, F3.36(200)A, W5.43(279)A, W6.48(356)A, and F3.25(189)A mutation studies, which revealed the ORG27569-binding site overlaps with our previously determined binding site of SR141716A but extends extracellularly. Additionally, we identified a key electrostatic interaction between the ORG27569 piperidine ring nitrogen and K3.28(192) that is important for ORG27569 to act as an inverse agonist. At this allosteric site, ORG27569 promotes an intermediate conformation of the CB1 receptor, explaining ORG27569's ability to increase equilibrium binding of CP55,940. This site also explains ORG27569's ability to antagonize the efficacy of CP55,940 in three complementary ways. 1) ORG27569 sterically blocks movements of the second extracellular loop that have been linked to receptor activation. 2) ORG27569 sterically blocks a key electrostatic interaction between the third extracellular loop residue Lys-373 and D2.63(176). 3) ORG27569 packs against TMH6, sterically hindering movements of this helix that have been shown to be important for receptor activation.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Simulação de Dinâmica Molecular , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Sítios de Ligação , Antagonistas de Receptores de Canabinoides/química , Células HEK293 , Humanos , Indóis/química , Piperidinas/química , Ligação Proteica , Pirazóis , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Transdução de Sinais/genética
5.
Mol Pharmacol ; 83(2): 322-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160940

RESUMO

We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and ß-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and ß-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Animais , Arrestinas/metabolismo , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colforsina/farmacologia , Cricetinae , AMP Cíclico/metabolismo , Cicloexanóis/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Indóis/farmacologia , Cinética , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas
6.
J Biol Chem ; 287(1): 91-104, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22027819

RESUMO

GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.


Assuntos
Canabinoides/farmacologia , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica/efeitos dos fármacos , Analgésicos/química , Analgésicos/farmacologia , Canabinoides/química , Cannabis/química , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Células HEK293 , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/química , Piperidinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Rimonabanto
7.
ChemMedChem ; 15(1): 79-95, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31675166

RESUMO

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins. Aberrant expression of KLK6 has been found in different cancers and neurodegenerative diseases, and KLK6 is currently studied as a potential target in these pathologies. We report a novel series of KLK6 inhibitors discovered in a high-throughput screen within the European Lead Factory program. Structure-guided design based on docking studies enabled rapid progression of a hit cluster to inhibitors with improved potency, selectivity and pharmacokinetic properties. In particular, inhibitors 32 ((5R)-3-(4-carbamimidoylphenyl)-N-((S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) and 34 ((5R)-3-(6-carbamimidoylpyridin-3-yl)-N-((1S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) have single-digit nanomolar potency against KLK6, with over 25-fold and 100-fold selectivities against the closely related enzyme trypsin, respectively. The most potent compound, 32, effectively reduces KLK6-dependent invasion of HCT116 cells. The high potency in combination with good solubility and low clearance of 32 make it a good chemical probe for KLK6 target validation in vitro and potentially in vivo.


Assuntos
Calicreínas/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Oxazolidinonas/química , Sítios de Ligação , Movimento Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Células HCT116 , Meia-Vida , Humanos , Concentração Inibidora 50 , Calicreínas/metabolismo , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
8.
J Med Chem ; 62(10): 5049-5062, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31050898

RESUMO

The first generation of CB1 positive allosteric modulators (e.g., ZCZ011) featured a 3-nitroalkyl-2-phenyl-indole structure. Although a small number of drugs include the nitro group, it is generally not regarded as being "drug-like", and this is particularly true for aliphatic nitro groups. There are very few case studies where an appropriate bioisostere replaced a nitro group that had a direct role in binding. This may be indicative of the difficulty of replicating its binding interactions. Herein, we report the design and synthesis of ligands targeting the allosteric binding site on the CB1 cannabinoid receptor, in which a CF3 group successfully replaced the aliphatic NO2. In general, the CF3-bearing compounds were more potent than their NO2 equivalents and also showed improved in vitro metabolic stability. The CF3 analogue (1) with the best balance of properties was selected for further pharmacological evaluation. Pilot in vivo studies showed that (±)-1 has similar activity to (±)-ZCZ011, with both showing promising efficacy in a mouse model of neuropathic pain.


Assuntos
Nitrocompostos/síntese química , Nitrocompostos/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , AMP Cíclico/metabolismo , Desenho de Fármacos , Isomerismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neuralgia/tratamento farmacológico , Neuralgia/psicologia , Nitrocompostos/farmacocinética , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
9.
Front Mol Neurosci ; 11: 230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026687

RESUMO

Defining functional domains and amino acid residues in G protein coupled receptors (GPCRs) represent an important way to improve rational drug design for this major class of drug targets. The cannabinoid type 1 (CB1) receptor is one of the most abundant GPCRs in the central nervous system and is involved in many physiological and pathophysiological processes. Interestingly, cannabinoid type 1 receptor with a phenylalanine 238 to leucine mutation (CB1F238L) has been already linked to a number of both in vitro and in vivo alterations. While CB1F238L causes significantly reduced presynaptic neurotransmitter release at the cellular level, behaviorally this mutation induces increased risk taking, social play behavior and reward sensitivity in rats. However, the molecular mechanisms underlying these changes are not fully understood. In this study, we tested whether the F238L mutation affects trafficking and axonal/presynaptic polarization of the CB1 receptor in vitro. Steady state or ligand modulated surface expression and lipid raft association was analyzed in human embryonic kidney 293 (HEK293) cells stably expressing either wild-type cannabinoid type 1 receptor (CB1wt) or CB1F238L receptor. Axonal/presynaptic polarization of the CB1F238L receptor was assessed in transfected primary hippocampal neurons. We show that in vitro the CB1F238L receptor displays increased association with lipid rafts, which coincides with increased lipid raft mediated constitutive endocytosis, leading to a reduction in steady state surface expression of the CB1F238L receptor. Furthermore, the CB1F238L receptor showed increased axonal polarization in primary hippocampal neurons. These data demonstrate that endocytosis of the CB1 receptor is an important mediator of axonal/presynaptic polarization and that phenylalanine 238 plays a key role in CB1 receptor trafficking and axonal polarization.

10.
Sci Rep ; 7(1): 294, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28331191

RESUMO

Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/agonistas , Nucleotídeos/isolamento & purificação , Nucleotídeos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Ligação Proteica
11.
SLAS Discov ; 22(6): 676-685, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314118

RESUMO

A major hallmark of Alzheimer's disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-ß peptide (Aß). Aß has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aß-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Descoberta de Drogas , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Doença de Alzheimer/tratamento farmacológico , Fenômenos Químicos , Descoberta de Drogas/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Técnicas In Vitro , Cinética , Ligantes , Ligação Proteica , Reprodutibilidade dos Testes
12.
Eur J Med Chem ; 121: 194-208, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27240274

RESUMO

8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed.


Assuntos
Piperidinas/síntese química , Piperidinas/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Descoberta de Drogas , Ligação Proteica , Relação Estrutura-Atividade
13.
Br J Pharmacol ; 146(7): 917-26, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16205722

RESUMO

Delta9-tetrahydrocannabivarin (THCV) displaced [(3)H]CP55940 from specific binding sites on mouse brain and CHO-hCB(2) cell membranes (K(i)=75.4 and 62.8 nM, respectively).THCV (1 microM) also antagonized CP55940-induced stimulation of [(35)S]GTPgammaS binding to these membranes (apparent K(B)=93.1 and 10.1 nM, respectively). In the mouse vas deferens, the ability of Delta9-tetrahydrocannabinol (THC) to inhibit electrically evoked contractions was antagonized by THCV, its apparent K(B)-value (96.7 nM) approximating the apparent K(B)-values for its antagonism of CP55940- and R-(+)-WIN55212-induced stimulation of [(35)S]GTPgammaS binding to mouse brain membranes. THCV also antagonized R-(+)-WIN55212, anandamide, methanandamide and CP55940 in the vas deferens, but with lower apparent K(B)-values (1.5, 1.2, 4.6 and 10.3 nM, respectively).THCV (100 nM) did not oppose clonidine, capsaicin or (-)-7-hydroxy-cannabidiol-dimethylheptyl-induced inhibition of electrically evoked contractions of the vas deferens. Contractile responses of the vas deferens to phenylephrine hydrochloride or beta,gamma-methylene-ATP were not reduced by 1microM THCV or R-(+)-WIN55212, suggesting that THCV interacts with R-(+)-WIN55212 at prejunctional sites. At 32 microM, THCV did reduce contractile responses to phenylephrine hydrochloride and beta,gamma-methylene-ATP, and above 3 microM it inhibited electrically evoked contractions of the vas deferens in an SR141716A-independent manner. In conclusion, THCV behaves as a competitive CB(1) and CB(2) receptor antagonist. In the vas deferens, it antagonized several cannabinoids more potently than THC and was also more potent against CP55940 and R-(+)-WIN55212 in this tissue than in brain membranes. The bases of these agonist- and tissue-dependent effects remain to be established.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Dronabinol/análogos & derivados , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Benzoxazinas , Células CHO , Clonidina/farmacologia , Cricetinae , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Endocanabinoides , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Morfolinas/antagonistas & inibidores , Contração Muscular/efeitos dos fármacos , Naftalenos/antagonistas & inibidores , Alcamidas Poli-Insaturadas , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
14.
Neuropsychopharmacology ; 40(13): 2948-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26052038

RESUMO

The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and ß-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.


Assuntos
Analgésicos não Narcóticos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Tiofenos/farmacologia , Regulação Alostérica , Amidoidrolases/genética , Amidoidrolases/metabolismo , Analgésicos não Narcóticos/efeitos adversos , Analgésicos não Narcóticos/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Moduladores de Receptores de Canabinoides/efeitos adversos , Moduladores de Receptores de Canabinoides/farmacocinética , Carragenina , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/efeitos adversos , Indóis/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tiofenos/efeitos adversos , Tiofenos/farmacocinética
15.
Science ; 343(6166): 94-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24385629

RESUMO

Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.


Assuntos
Encéfalo/efeitos dos fármacos , Cannabis/toxicidade , Dronabinol/toxicidade , Pregnenolona/administração & dosagem , Pregnenolona/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/administração & dosagem , Masculino , Abuso de Maconha/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar
16.
Mol Pharmacol ; 68(5): 1484-95, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16113085

RESUMO

We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1 receptor. In equilibrium binding assays, the Org compounds significantly increased the binding of the CB1 receptor agonist [3H]CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], indicative of a positively cooperative allosteric effect. The same compounds caused a significant, but incomplete, decrease in the specific binding of the CB1 receptor inverse agonist [3H]SR 141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride], indicative of a limited negative binding cooperativity. Analysis of the data according to an allosteric ternary complex model revealed that the estimated affinity of each Org compound was not significantly different when the radioligand was [3H]CP 55,940 or [3H]SR 141716A. However, the estimated cooperatively factor for the interaction between modulator and radioligand was greater than 1 when determined against [3H]CP 55,940 and less than 1 when determined against [3H]SR 141716A. [3H]CP 55,940 dissociation kinetic studies also validated the allosteric nature of the Org compounds, because they all significantly decreased radioligand dissociation. These data suggest that the Org compounds bind allosterically to the CB1 receptor and elicit a conformational change that increases agonist affinity for the orthosteric binding site. In contrast to the binding assays, however, the Org compounds behaved as insurmountable antagonists of receptor function; in the reporter gene assay, the guanosine 5'-O-(3-[35S]thio)triphosphate binding assay and the mouse vas deferens assay they elicited a significant reduction in the Emax value for CB1 receptor agonists. The data presented clearly demonstrate, for the first time, that the cannabinoid CB1 receptor contains an allosteric binding site that can be recognized by synthetic small molecule ligands.


Assuntos
Receptor CB1 de Canabinoide/efeitos dos fármacos , Regulação Alostérica , Animais , Sítios de Ligação , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Masculino , Camundongos , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA